Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates?

Although controversial, many observations have suggested that low‐level cloud cover correlates with the cosmic ray flux. Because galactic cosmic rays have likely decreased in intensity over the last century, this hypothesis, if true, could partly explain 20th century warming, thereby upsetting the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2009-05, Vol.36 (9), p.np-n/a
Hauptverfasser: Pierce, J. R., Adams, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page np
container_title Geophysical research letters
container_volume 36
creator Pierce, J. R.
Adams, P. J.
description Although controversial, many observations have suggested that low‐level cloud cover correlates with the cosmic ray flux. Because galactic cosmic rays have likely decreased in intensity over the last century, this hypothesis, if true, could partly explain 20th century warming, thereby upsetting the consensus view that greenhouse‐gas forcing has caused most of the warming. The “ion‐aerosol clear‐air” hypothesis suggests that increased cosmic rays cause increases in new‐particle formation, cloud condensation nuclei concentrations (CCN), and cloud cover. In this paper, we present the first calculations of the magnitude of the ion‐aerosol clear‐air mechanism using a general circulation model with online aerosol microphysics. In our simulations, changes in CCN from changes in cosmic rays during a solar cycle are two orders of magnitude too small to account for the observed changes in cloud properties; consequently, we conclude that the hypothesized effect is too small to play a significant role in current climate change.
doi_str_mv 10.1029/2009GL037946
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524419297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524419297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5106-ec27a4924650b61d1bf61e723bd9fc6f9fcff961c7f0a0cc189dc2d9f500ee663</originalsourceid><addsrcrecordid>eNp9kE-LFDEQxYMoOI7e_ABBEDzYu5WkO-mcREadXZhV8A8jXkImXZGsPekx6Wadb2-GXhbxsJdKhfd7j-IR8pzBGQOuzzmAXm9AKF3LB2TBdF1XLYB6SBZFKTtX8jF5kvM1AAgQbEF-rGykbsj74Giyx0yt9-hG6vph6ooQO4zZjmGINE6ux0B3R2r7EVOIP2nEG3qwaQxFoX5I-5lMdsT85il55G2f8dntuyTfPrz_urqoNp_Wl6u3m8o1DGSFjitba17LBnaSdWznJUPFxa7T3klfhvdaMqc8WHCOtbpzvGgNAKKUYklezbmHNPyeMI9mH7LDvrcRhykb1vC6ZpprVdAX_6HXw5Riuc60tRa6KcUV6PUMuTTknNCbQwp7m46GgTn1bP7tueAvbzNtdrb3yUYX8p2Hs0aKU91LwmfuJvR4vDfTrD9veNO2p_BqNoU84p87k02_jFRCNWb7cW2-bLf6-9W78hF_Ad4omtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849395946</pqid></control><display><type>article</type><title>Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates?</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pierce, J. R. ; Adams, P. J.</creator><creatorcontrib>Pierce, J. R. ; Adams, P. J.</creatorcontrib><description>Although controversial, many observations have suggested that low‐level cloud cover correlates with the cosmic ray flux. Because galactic cosmic rays have likely decreased in intensity over the last century, this hypothesis, if true, could partly explain 20th century warming, thereby upsetting the consensus view that greenhouse‐gas forcing has caused most of the warming. The “ion‐aerosol clear‐air” hypothesis suggests that increased cosmic rays cause increases in new‐particle formation, cloud condensation nuclei concentrations (CCN), and cloud cover. In this paper, we present the first calculations of the magnitude of the ion‐aerosol clear‐air mechanism using a general circulation model with online aerosol microphysics. In our simulations, changes in CCN from changes in cosmic rays during a solar cycle are two orders of magnitude too small to account for the observed changes in cloud properties; consequently, we conclude that the hypothesized effect is too small to play a significant role in current climate change.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2009GL037946</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>aerosol nucleation ; Aerosols ; Atmosphere ; Atmospheric aerosols ; Atmospheric sciences ; Chemistry ; Climate change ; cloud condensation nuclei ; Cloud cover ; Clouds ; Condensation nuclei ; Cosmic rays ; Earth ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Flux ; Ions ; Microphysics</subject><ispartof>Geophysical research letters, 2009-05, Vol.36 (9), p.np-n/a</ispartof><rights>Copyright 2009 by the American Geophysical Union.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright 2009 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5106-ec27a4924650b61d1bf61e723bd9fc6f9fcff961c7f0a0cc189dc2d9f500ee663</citedby><cites>FETCH-LOGICAL-c5106-ec27a4924650b61d1bf61e723bd9fc6f9fcff961c7f0a0cc189dc2d9f500ee663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009GL037946$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009GL037946$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21563000$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pierce, J. R.</creatorcontrib><creatorcontrib>Adams, P. J.</creatorcontrib><title>Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates?</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Although controversial, many observations have suggested that low‐level cloud cover correlates with the cosmic ray flux. Because galactic cosmic rays have likely decreased in intensity over the last century, this hypothesis, if true, could partly explain 20th century warming, thereby upsetting the consensus view that greenhouse‐gas forcing has caused most of the warming. The “ion‐aerosol clear‐air” hypothesis suggests that increased cosmic rays cause increases in new‐particle formation, cloud condensation nuclei concentrations (CCN), and cloud cover. In this paper, we present the first calculations of the magnitude of the ion‐aerosol clear‐air mechanism using a general circulation model with online aerosol microphysics. In our simulations, changes in CCN from changes in cosmic rays during a solar cycle are two orders of magnitude too small to account for the observed changes in cloud properties; consequently, we conclude that the hypothesized effect is too small to play a significant role in current climate change.</description><subject>aerosol nucleation</subject><subject>Aerosols</subject><subject>Atmosphere</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric sciences</subject><subject>Chemistry</subject><subject>Climate change</subject><subject>cloud condensation nuclei</subject><subject>Cloud cover</subject><subject>Clouds</subject><subject>Condensation nuclei</subject><subject>Cosmic rays</subject><subject>Earth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Ions</subject><subject>Microphysics</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE-LFDEQxYMoOI7e_ABBEDzYu5WkO-mcREadXZhV8A8jXkImXZGsPekx6Wadb2-GXhbxsJdKhfd7j-IR8pzBGQOuzzmAXm9AKF3LB2TBdF1XLYB6SBZFKTtX8jF5kvM1AAgQbEF-rGykbsj74Giyx0yt9-hG6vph6ooQO4zZjmGINE6ux0B3R2r7EVOIP2nEG3qwaQxFoX5I-5lMdsT85il55G2f8dntuyTfPrz_urqoNp_Wl6u3m8o1DGSFjitba17LBnaSdWznJUPFxa7T3klfhvdaMqc8WHCOtbpzvGgNAKKUYklezbmHNPyeMI9mH7LDvrcRhykb1vC6ZpprVdAX_6HXw5Riuc60tRa6KcUV6PUMuTTknNCbQwp7m46GgTn1bP7tueAvbzNtdrb3yUYX8p2Hs0aKU91LwmfuJvR4vDfTrD9veNO2p_BqNoU84p87k02_jFRCNWb7cW2-bLf6-9W78hF_Ad4omtQ</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>Pierce, J. R.</creator><creator>Adams, P. J.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>200905</creationdate><title>Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates?</title><author>Pierce, J. R. ; Adams, P. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5106-ec27a4924650b61d1bf61e723bd9fc6f9fcff961c7f0a0cc189dc2d9f500ee663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>aerosol nucleation</topic><topic>Aerosols</topic><topic>Atmosphere</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric sciences</topic><topic>Chemistry</topic><topic>Climate change</topic><topic>cloud condensation nuclei</topic><topic>Cloud cover</topic><topic>Clouds</topic><topic>Condensation nuclei</topic><topic>Cosmic rays</topic><topic>Earth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Ions</topic><topic>Microphysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pierce, J. R.</creatorcontrib><creatorcontrib>Adams, P. J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierce, J. R.</au><au>Adams, P. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates?</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2009-05</date><risdate>2009</risdate><volume>36</volume><issue>9</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>Although controversial, many observations have suggested that low‐level cloud cover correlates with the cosmic ray flux. Because galactic cosmic rays have likely decreased in intensity over the last century, this hypothesis, if true, could partly explain 20th century warming, thereby upsetting the consensus view that greenhouse‐gas forcing has caused most of the warming. The “ion‐aerosol clear‐air” hypothesis suggests that increased cosmic rays cause increases in new‐particle formation, cloud condensation nuclei concentrations (CCN), and cloud cover. In this paper, we present the first calculations of the magnitude of the ion‐aerosol clear‐air mechanism using a general circulation model with online aerosol microphysics. In our simulations, changes in CCN from changes in cosmic rays during a solar cycle are two orders of magnitude too small to account for the observed changes in cloud properties; consequently, we conclude that the hypothesized effect is too small to play a significant role in current climate change.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009GL037946</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2009-05, Vol.36 (9), p.np-n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1524419297
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects aerosol nucleation
Aerosols
Atmosphere
Atmospheric aerosols
Atmospheric sciences
Chemistry
Climate change
cloud condensation nuclei
Cloud cover
Clouds
Condensation nuclei
Cosmic rays
Earth
Earth sciences
Earth, ocean, space
Exact sciences and technology
Flux
Ions
Microphysics
title Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20cosmic%20rays%20affect%20cloud%20condensation%20nuclei%20by%20altering%20new%20particle%20formation%20rates?&rft.jtitle=Geophysical%20research%20letters&rft.au=Pierce,%20J.%20R.&rft.date=2009-05&rft.volume=36&rft.issue=9&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2009GL037946&rft_dat=%3Cproquest_cross%3E1524419297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849395946&rft_id=info:pmid/&rfr_iscdi=true