Disulfide Bond: Dramatically Enhanced Assembly Capability and Structural Stability of Tobacco Mosaic Virus Nanorods
Tobacco mosaic virus (TMV) is a classical viral nanoarchitecture that has been extensively employed as a promising template for the fabrication of novel nanomaterials and nanostructures. Despite being an ideal source, the Escherichia coli-derived TMV nanorod is suffering from tenuous assembly capabi...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2013-08, Vol.14 (8), p.2593-2600 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2600 |
---|---|
container_issue | 8 |
container_start_page | 2593 |
container_title | Biomacromolecules |
container_volume | 14 |
creator | Zhou, Kun Li, Feng Dai, Gaole Meng, Chun Wang, Qiangbin |
description | Tobacco mosaic virus (TMV) is a classical viral nanoarchitecture that has been extensively employed as a promising template for the fabrication of novel nanomaterials and nanostructures. Despite being an ideal source, the Escherichia coli-derived TMV nanorod is suffering from tenuous assembly capability and stability. Inspired by the disulfide bond widely employed in biosystems, here we rationally introduce a cysteine into TMV coat protein (TMV-CP) to enable disulfide bond formation between adjacent subunits, thereby radically altering the behaviors of original noncovalent assembling system of wild type TMV-CP. The dramatically enhanced self-assembly capability and stability of the engineered TMV nanorods are observed and the essential roles of disulfide bonds are verified, illustrating a promising strategy to obtain desired genetic-modified nanorods that are inaccessible in plants. We expect this work will benefit the development of TMV-based nanotechnology and encourage the utilization of disulfide bonds in other biomacromolecules for improved properties as nanoscaffolds. |
doi_str_mv | 10.1021/bm400445m |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524419027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524419027</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-a3357a29cb94c0aad6a981ad8fbead7937795a196de1de30a48cb3490328b5733</originalsourceid><addsrcrecordid>eNptkEtP3DAQgK0KVB7tgT-AfEGCw4Id23Hc27LQggTtobTXaPyIapTEiyc57L_HLQtcepkZzXya0XyEHHF2zlnFL-wgGZNSDR_IPldVvZA1q3b-1WqhtdF75ADxkTFmhFQfyV4ldC3qqtkneBVx7rvoA71Mo_9CrzIMMEUHfb-h1-MfGF3wdIkYBls6K1iDjX2cNhRGT39OeXbTnKEv5esgdfQhWXAu0fuEEB39HfOM9DuMKSePn8huBz2Gz9t8SH59vX5Y3Szufny7XS3vFiB0M5UolIbKOGukYwC-BtNw8E1nA3htRPlMATe1D9wHwUA2zgppmKgaq7QQh-T0Ze86p6c54NQOEV3oexhDmrEteqTkhlW6oGcvqMsJMYeuXec4QN60nLV_Hbdvjgt7vF072yH4N_JVagFOtgBg8djl4jDiO6dr1Wil3zlw2D6mOY_Fxn8OPgOJeZCa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524419027</pqid></control><display><type>article</type><title>Disulfide Bond: Dramatically Enhanced Assembly Capability and Structural Stability of Tobacco Mosaic Virus Nanorods</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhou, Kun ; Li, Feng ; Dai, Gaole ; Meng, Chun ; Wang, Qiangbin</creator><creatorcontrib>Zhou, Kun ; Li, Feng ; Dai, Gaole ; Meng, Chun ; Wang, Qiangbin</creatorcontrib><description>Tobacco mosaic virus (TMV) is a classical viral nanoarchitecture that has been extensively employed as a promising template for the fabrication of novel nanomaterials and nanostructures. Despite being an ideal source, the Escherichia coli-derived TMV nanorod is suffering from tenuous assembly capability and stability. Inspired by the disulfide bond widely employed in biosystems, here we rationally introduce a cysteine into TMV coat protein (TMV-CP) to enable disulfide bond formation between adjacent subunits, thereby radically altering the behaviors of original noncovalent assembling system of wild type TMV-CP. The dramatically enhanced self-assembly capability and stability of the engineered TMV nanorods are observed and the essential roles of disulfide bonds are verified, illustrating a promising strategy to obtain desired genetic-modified nanorods that are inaccessible in plants. We expect this work will benefit the development of TMV-based nanotechnology and encourage the utilization of disulfide bonds in other biomacromolecules for improved properties as nanoscaffolds.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm400445m</identifier><identifier>PMID: 23763628</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Amino Acid Substitution ; Analytical, structural and metabolic biochemistry ; Applied sciences ; Biological and medical sciences ; Capsid Proteins - chemistry ; Capsid Proteins - genetics ; Cystine - chemistry ; Escherichia ; Escherichia coli ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration ; Miscellaneous ; Nanotubes - chemistry ; Nanotubes - ultrastructure ; Natural polymers ; Physicochemistry of polymers ; Protein Multimerization ; Protein Stability ; Protein Subunits - chemistry ; Protein Subunits - genetics ; Proteins ; Tobacco mosaic virus ; Tobacco Mosaic Virus - chemistry</subject><ispartof>Biomacromolecules, 2013-08, Vol.14 (8), p.2593-2600</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-a3357a29cb94c0aad6a981ad8fbead7937795a196de1de30a48cb3490328b5733</citedby><cites>FETCH-LOGICAL-a378t-a3357a29cb94c0aad6a981ad8fbead7937795a196de1de30a48cb3490328b5733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm400445m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm400445m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27658757$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23763628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Kun</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Dai, Gaole</creatorcontrib><creatorcontrib>Meng, Chun</creatorcontrib><creatorcontrib>Wang, Qiangbin</creatorcontrib><title>Disulfide Bond: Dramatically Enhanced Assembly Capability and Structural Stability of Tobacco Mosaic Virus Nanorods</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Tobacco mosaic virus (TMV) is a classical viral nanoarchitecture that has been extensively employed as a promising template for the fabrication of novel nanomaterials and nanostructures. Despite being an ideal source, the Escherichia coli-derived TMV nanorod is suffering from tenuous assembly capability and stability. Inspired by the disulfide bond widely employed in biosystems, here we rationally introduce a cysteine into TMV coat protein (TMV-CP) to enable disulfide bond formation between adjacent subunits, thereby radically altering the behaviors of original noncovalent assembling system of wild type TMV-CP. The dramatically enhanced self-assembly capability and stability of the engineered TMV nanorods are observed and the essential roles of disulfide bonds are verified, illustrating a promising strategy to obtain desired genetic-modified nanorods that are inaccessible in plants. We expect this work will benefit the development of TMV-based nanotechnology and encourage the utilization of disulfide bonds in other biomacromolecules for improved properties as nanoscaffolds.</description><subject>Amino Acid Substitution</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Capsid Proteins - chemistry</subject><subject>Capsid Proteins - genetics</subject><subject>Cystine - chemistry</subject><subject>Escherichia</subject><subject>Escherichia coli</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Miscellaneous</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes - ultrastructure</subject><subject>Natural polymers</subject><subject>Physicochemistry of polymers</subject><subject>Protein Multimerization</subject><subject>Protein Stability</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - genetics</subject><subject>Proteins</subject><subject>Tobacco mosaic virus</subject><subject>Tobacco Mosaic Virus - chemistry</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEtP3DAQgK0KVB7tgT-AfEGCw4Id23Hc27LQggTtobTXaPyIapTEiyc57L_HLQtcepkZzXya0XyEHHF2zlnFL-wgGZNSDR_IPldVvZA1q3b-1WqhtdF75ADxkTFmhFQfyV4ldC3qqtkneBVx7rvoA71Mo_9CrzIMMEUHfb-h1-MfGF3wdIkYBls6K1iDjX2cNhRGT39OeXbTnKEv5esgdfQhWXAu0fuEEB39HfOM9DuMKSePn8huBz2Gz9t8SH59vX5Y3Szufny7XS3vFiB0M5UolIbKOGukYwC-BtNw8E1nA3htRPlMATe1D9wHwUA2zgppmKgaq7QQh-T0Ze86p6c54NQOEV3oexhDmrEteqTkhlW6oGcvqMsJMYeuXec4QN60nLV_Hbdvjgt7vF072yH4N_JVagFOtgBg8djl4jDiO6dr1Wil3zlw2D6mOY_Fxn8OPgOJeZCa</recordid><startdate>20130812</startdate><enddate>20130812</enddate><creator>Zhou, Kun</creator><creator>Li, Feng</creator><creator>Dai, Gaole</creator><creator>Meng, Chun</creator><creator>Wang, Qiangbin</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope></search><sort><creationdate>20130812</creationdate><title>Disulfide Bond: Dramatically Enhanced Assembly Capability and Structural Stability of Tobacco Mosaic Virus Nanorods</title><author>Zhou, Kun ; Li, Feng ; Dai, Gaole ; Meng, Chun ; Wang, Qiangbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-a3357a29cb94c0aad6a981ad8fbead7937795a196de1de30a48cb3490328b5733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Substitution</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Capsid Proteins - chemistry</topic><topic>Capsid Proteins - genetics</topic><topic>Cystine - chemistry</topic><topic>Escherichia</topic><topic>Escherichia coli</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Miscellaneous</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes - ultrastructure</topic><topic>Natural polymers</topic><topic>Physicochemistry of polymers</topic><topic>Protein Multimerization</topic><topic>Protein Stability</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - genetics</topic><topic>Proteins</topic><topic>Tobacco mosaic virus</topic><topic>Tobacco Mosaic Virus - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Kun</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Dai, Gaole</creatorcontrib><creatorcontrib>Meng, Chun</creatorcontrib><creatorcontrib>Wang, Qiangbin</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Kun</au><au>Li, Feng</au><au>Dai, Gaole</au><au>Meng, Chun</au><au>Wang, Qiangbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disulfide Bond: Dramatically Enhanced Assembly Capability and Structural Stability of Tobacco Mosaic Virus Nanorods</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2013-08-12</date><risdate>2013</risdate><volume>14</volume><issue>8</issue><spage>2593</spage><epage>2600</epage><pages>2593-2600</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Tobacco mosaic virus (TMV) is a classical viral nanoarchitecture that has been extensively employed as a promising template for the fabrication of novel nanomaterials and nanostructures. Despite being an ideal source, the Escherichia coli-derived TMV nanorod is suffering from tenuous assembly capability and stability. Inspired by the disulfide bond widely employed in biosystems, here we rationally introduce a cysteine into TMV coat protein (TMV-CP) to enable disulfide bond formation between adjacent subunits, thereby radically altering the behaviors of original noncovalent assembling system of wild type TMV-CP. The dramatically enhanced self-assembly capability and stability of the engineered TMV nanorods are observed and the essential roles of disulfide bonds are verified, illustrating a promising strategy to obtain desired genetic-modified nanorods that are inaccessible in plants. We expect this work will benefit the development of TMV-based nanotechnology and encourage the utilization of disulfide bonds in other biomacromolecules for improved properties as nanoscaffolds.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23763628</pmid><doi>10.1021/bm400445m</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2013-08, Vol.14 (8), p.2593-2600 |
issn | 1525-7797 1526-4602 |
language | eng |
recordid | cdi_proquest_miscellaneous_1524419027 |
source | MEDLINE; ACS Publications |
subjects | Amino Acid Substitution Analytical, structural and metabolic biochemistry Applied sciences Biological and medical sciences Capsid Proteins - chemistry Capsid Proteins - genetics Cystine - chemistry Escherichia Escherichia coli Exact sciences and technology Fundamental and applied biological sciences. Psychology Hydrogen-Ion Concentration Miscellaneous Nanotubes - chemistry Nanotubes - ultrastructure Natural polymers Physicochemistry of polymers Protein Multimerization Protein Stability Protein Subunits - chemistry Protein Subunits - genetics Proteins Tobacco mosaic virus Tobacco Mosaic Virus - chemistry |
title | Disulfide Bond: Dramatically Enhanced Assembly Capability and Structural Stability of Tobacco Mosaic Virus Nanorods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A42%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disulfide%20Bond:%20Dramatically%20Enhanced%20Assembly%20Capability%20and%20Structural%20Stability%20of%20Tobacco%20Mosaic%20Virus%20Nanorods&rft.jtitle=Biomacromolecules&rft.au=Zhou,%20Kun&rft.date=2013-08-12&rft.volume=14&rft.issue=8&rft.spage=2593&rft.epage=2600&rft.pages=2593-2600&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm400445m&rft_dat=%3Cproquest_cross%3E1524419027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524419027&rft_id=info:pmid/23763628&rfr_iscdi=true |