Creating “Living” Polymer Surfaces to Pattern Biomolecules and Cells on Common Plastics

Creating patterns of biomolecules and cells has been applied widely in many fields associated with the life sciences, including diagnostics. In these applications it has become increasingly apparent that the spatiotemporal arrangement of biological molecules in vitro is important for the investigati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2013-05, Vol.14 (5), p.1278-1286
Hauptverfasser: Li, Chunyan, Glidle, Andrew, Yuan, Xiaofei, Hu, Zhixiong, Pulleine, Ellie, Cooper, Jon, Yang, Wantai, Yin, Huabing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1286
container_issue 5
container_start_page 1278
container_title Biomacromolecules
container_volume 14
creator Li, Chunyan
Glidle, Andrew
Yuan, Xiaofei
Hu, Zhixiong
Pulleine, Ellie
Cooper, Jon
Yang, Wantai
Yin, Huabing
description Creating patterns of biomolecules and cells has been applied widely in many fields associated with the life sciences, including diagnostics. In these applications it has become increasingly apparent that the spatiotemporal arrangement of biological molecules in vitro is important for the investigation of the cellular functions found in vivo. However, the cell patterning techniques often used are limited to creating 2D functional surfaces on glass and silicon. In addition, in general, these procedures are not easy to implement in conventional biological laboratories. Here, we show the formation of a living poly(ethylene glycol) (PEG) layer that can be patterned with visible light on plastic surfaces. This new and simple method can be expanded to pattern multiple types of biomolecule on either a previously formed PEG layer or a plastic substrate. Using common plastic wares (i.e., polyethylene films and polystyrene cell culture Petri-dishes), we demonstrate that these PEG-modified surfaces have a high resistance to protein adsorption and cell adhesion, while at the same time, being capable of undergoing further molecular grafting with bioactive motifs. With a photomask and a fluid delivery system, we illustrate a flexible way to immobilize biological functions with a high degree of 2D and 3D spatial control. We anticipate that our method can be easily implemented in a typical life science laboratory (without the need for specialized lithography equipment) offering the prospect of imparting desirable properties to plastic products, for example, the creation of functional microenvironments in biological studies or reducing biological adhesion to surfaces.
doi_str_mv 10.1021/bm4000597
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524418871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524418871</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-f4cb7f34f6c91081019c8f29e45fd52f150450a9f30713a6f95147a11cc7be9f3</originalsourceid><addsrcrecordid>eNqF0M1OAyEQB3BiNLZWD76A4WKih1VYoCxH3fiVNLGJevKwYSmYbdilwq5Jb30Qfbk-iWirvZh4msnkxwB_AA4xOsMoxedlTRFCTPAt0McsHSZ0iNLt754lnAveA3shTKMRhLJd0EsJFUzgrA-ec69lWzUvcLl4H1VvsVsuPuDY2XmtPXzovJFKB9g6OJZtq30DLytXO6tVZ-NcNhOYa2sDdA3MXV3HMrYytJUK-2DHSBv0wboOwNP11WN-m4zub-7yi1EiCc_axFBVckOoGSqBUYYRFiozqdCUmQlLDWaIMiSFIYhjIodGMEy5xFgpXuo4HoCT1d6Zd6-dDm1RV0HFR8lGuy4UMQZKcZbF0_9SwlAmsCBZpKcrqrwLwWtTzHxVSz8vMCq-Yi9-Y4_2aL22K2s9-ZU_OUdwvAYyKGmNl42qwsZxwln8-8ZJFYqp63wTg_vjwk9HZ5Xx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1350891938</pqid></control><display><type>article</type><title>Creating “Living” Polymer Surfaces to Pattern Biomolecules and Cells on Common Plastics</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Li, Chunyan ; Glidle, Andrew ; Yuan, Xiaofei ; Hu, Zhixiong ; Pulleine, Ellie ; Cooper, Jon ; Yang, Wantai ; Yin, Huabing</creator><creatorcontrib>Li, Chunyan ; Glidle, Andrew ; Yuan, Xiaofei ; Hu, Zhixiong ; Pulleine, Ellie ; Cooper, Jon ; Yang, Wantai ; Yin, Huabing</creatorcontrib><description>Creating patterns of biomolecules and cells has been applied widely in many fields associated with the life sciences, including diagnostics. In these applications it has become increasingly apparent that the spatiotemporal arrangement of biological molecules in vitro is important for the investigation of the cellular functions found in vivo. However, the cell patterning techniques often used are limited to creating 2D functional surfaces on glass and silicon. In addition, in general, these procedures are not easy to implement in conventional biological laboratories. Here, we show the formation of a living poly(ethylene glycol) (PEG) layer that can be patterned with visible light on plastic surfaces. This new and simple method can be expanded to pattern multiple types of biomolecule on either a previously formed PEG layer or a plastic substrate. Using common plastic wares (i.e., polyethylene films and polystyrene cell culture Petri-dishes), we demonstrate that these PEG-modified surfaces have a high resistance to protein adsorption and cell adhesion, while at the same time, being capable of undergoing further molecular grafting with bioactive motifs. With a photomask and a fluid delivery system, we illustrate a flexible way to immobilize biological functions with a high degree of 2D and 3D spatial control. We anticipate that our method can be easily implemented in a typical life science laboratory (without the need for specialized lithography equipment) offering the prospect of imparting desirable properties to plastic products, for example, the creation of functional microenvironments in biological studies or reducing biological adhesion to surfaces.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm4000597</identifier><identifier>PMID: 23495918</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Biological and medical sciences ; Biotechnology ; Cell Adhesion - drug effects ; Cell Line, Tumor ; Cell Survival - drug effects ; Coated Materials, Biocompatible - chemical synthesis ; Coated Materials, Biocompatible - pharmacology ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Grafting and modifications ; Humans ; Immobilization of enzymes and other molecules ; Immobilization techniques ; Light ; Methods. Procedures. Technologies ; Physicochemistry of polymers ; Plastics - chemistry ; Polyethylene - chemistry ; Polyethylene Glycols - chemistry ; Polymers and radiations ; Polystyrenes - chemistry ; Spectroscopy, Fourier Transform Infrared ; Surface Properties</subject><ispartof>Biomacromolecules, 2013-05, Vol.14 (5), p.1278-1286</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-f4cb7f34f6c91081019c8f29e45fd52f150450a9f30713a6f95147a11cc7be9f3</citedby><cites>FETCH-LOGICAL-a378t-f4cb7f34f6c91081019c8f29e45fd52f150450a9f30713a6f95147a11cc7be9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm4000597$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm4000597$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27375108$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23495918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>Glidle, Andrew</creatorcontrib><creatorcontrib>Yuan, Xiaofei</creatorcontrib><creatorcontrib>Hu, Zhixiong</creatorcontrib><creatorcontrib>Pulleine, Ellie</creatorcontrib><creatorcontrib>Cooper, Jon</creatorcontrib><creatorcontrib>Yang, Wantai</creatorcontrib><creatorcontrib>Yin, Huabing</creatorcontrib><title>Creating “Living” Polymer Surfaces to Pattern Biomolecules and Cells on Common Plastics</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Creating patterns of biomolecules and cells has been applied widely in many fields associated with the life sciences, including diagnostics. In these applications it has become increasingly apparent that the spatiotemporal arrangement of biological molecules in vitro is important for the investigation of the cellular functions found in vivo. However, the cell patterning techniques often used are limited to creating 2D functional surfaces on glass and silicon. In addition, in general, these procedures are not easy to implement in conventional biological laboratories. Here, we show the formation of a living poly(ethylene glycol) (PEG) layer that can be patterned with visible light on plastic surfaces. This new and simple method can be expanded to pattern multiple types of biomolecule on either a previously formed PEG layer or a plastic substrate. Using common plastic wares (i.e., polyethylene films and polystyrene cell culture Petri-dishes), we demonstrate that these PEG-modified surfaces have a high resistance to protein adsorption and cell adhesion, while at the same time, being capable of undergoing further molecular grafting with bioactive motifs. With a photomask and a fluid delivery system, we illustrate a flexible way to immobilize biological functions with a high degree of 2D and 3D spatial control. We anticipate that our method can be easily implemented in a typical life science laboratory (without the need for specialized lithography equipment) offering the prospect of imparting desirable properties to plastic products, for example, the creation of functional microenvironments in biological studies or reducing biological adhesion to surfaces.</description><subject>Applied sciences</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Coated Materials, Biocompatible - chemical synthesis</subject><subject>Coated Materials, Biocompatible - pharmacology</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Grafting and modifications</subject><subject>Humans</subject><subject>Immobilization of enzymes and other molecules</subject><subject>Immobilization techniques</subject><subject>Light</subject><subject>Methods. Procedures. Technologies</subject><subject>Physicochemistry of polymers</subject><subject>Plastics - chemistry</subject><subject>Polyethylene - chemistry</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymers and radiations</subject><subject>Polystyrenes - chemistry</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surface Properties</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M1OAyEQB3BiNLZWD76A4WKih1VYoCxH3fiVNLGJevKwYSmYbdilwq5Jb30Qfbk-iWirvZh4msnkxwB_AA4xOsMoxedlTRFCTPAt0McsHSZ0iNLt754lnAveA3shTKMRhLJd0EsJFUzgrA-ec69lWzUvcLl4H1VvsVsuPuDY2XmtPXzovJFKB9g6OJZtq30DLytXO6tVZ-NcNhOYa2sDdA3MXV3HMrYytJUK-2DHSBv0wboOwNP11WN-m4zub-7yi1EiCc_axFBVckOoGSqBUYYRFiozqdCUmQlLDWaIMiSFIYhjIodGMEy5xFgpXuo4HoCT1d6Zd6-dDm1RV0HFR8lGuy4UMQZKcZbF0_9SwlAmsCBZpKcrqrwLwWtTzHxVSz8vMCq-Yi9-Y4_2aL22K2s9-ZU_OUdwvAYyKGmNl42qwsZxwln8-8ZJFYqp63wTg_vjwk9HZ5Xx</recordid><startdate>20130513</startdate><enddate>20130513</enddate><creator>Li, Chunyan</creator><creator>Glidle, Andrew</creator><creator>Yuan, Xiaofei</creator><creator>Hu, Zhixiong</creator><creator>Pulleine, Ellie</creator><creator>Cooper, Jon</creator><creator>Yang, Wantai</creator><creator>Yin, Huabing</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130513</creationdate><title>Creating “Living” Polymer Surfaces to Pattern Biomolecules and Cells on Common Plastics</title><author>Li, Chunyan ; Glidle, Andrew ; Yuan, Xiaofei ; Hu, Zhixiong ; Pulleine, Ellie ; Cooper, Jon ; Yang, Wantai ; Yin, Huabing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-f4cb7f34f6c91081019c8f29e45fd52f150450a9f30713a6f95147a11cc7be9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Coated Materials, Biocompatible - chemical synthesis</topic><topic>Coated Materials, Biocompatible - pharmacology</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Grafting and modifications</topic><topic>Humans</topic><topic>Immobilization of enzymes and other molecules</topic><topic>Immobilization techniques</topic><topic>Light</topic><topic>Methods. Procedures. Technologies</topic><topic>Physicochemistry of polymers</topic><topic>Plastics - chemistry</topic><topic>Polyethylene - chemistry</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymers and radiations</topic><topic>Polystyrenes - chemistry</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>Glidle, Andrew</creatorcontrib><creatorcontrib>Yuan, Xiaofei</creatorcontrib><creatorcontrib>Hu, Zhixiong</creatorcontrib><creatorcontrib>Pulleine, Ellie</creatorcontrib><creatorcontrib>Cooper, Jon</creatorcontrib><creatorcontrib>Yang, Wantai</creatorcontrib><creatorcontrib>Yin, Huabing</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chunyan</au><au>Glidle, Andrew</au><au>Yuan, Xiaofei</au><au>Hu, Zhixiong</au><au>Pulleine, Ellie</au><au>Cooper, Jon</au><au>Yang, Wantai</au><au>Yin, Huabing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creating “Living” Polymer Surfaces to Pattern Biomolecules and Cells on Common Plastics</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2013-05-13</date><risdate>2013</risdate><volume>14</volume><issue>5</issue><spage>1278</spage><epage>1286</epage><pages>1278-1286</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Creating patterns of biomolecules and cells has been applied widely in many fields associated with the life sciences, including diagnostics. In these applications it has become increasingly apparent that the spatiotemporal arrangement of biological molecules in vitro is important for the investigation of the cellular functions found in vivo. However, the cell patterning techniques often used are limited to creating 2D functional surfaces on glass and silicon. In addition, in general, these procedures are not easy to implement in conventional biological laboratories. Here, we show the formation of a living poly(ethylene glycol) (PEG) layer that can be patterned with visible light on plastic surfaces. This new and simple method can be expanded to pattern multiple types of biomolecule on either a previously formed PEG layer or a plastic substrate. Using common plastic wares (i.e., polyethylene films and polystyrene cell culture Petri-dishes), we demonstrate that these PEG-modified surfaces have a high resistance to protein adsorption and cell adhesion, while at the same time, being capable of undergoing further molecular grafting with bioactive motifs. With a photomask and a fluid delivery system, we illustrate a flexible way to immobilize biological functions with a high degree of 2D and 3D spatial control. We anticipate that our method can be easily implemented in a typical life science laboratory (without the need for specialized lithography equipment) offering the prospect of imparting desirable properties to plastic products, for example, the creation of functional microenvironments in biological studies or reducing biological adhesion to surfaces.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23495918</pmid><doi>10.1021/bm4000597</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2013-05, Vol.14 (5), p.1278-1286
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_1524418871
source MEDLINE; American Chemical Society Journals
subjects Applied sciences
Biological and medical sciences
Biotechnology
Cell Adhesion - drug effects
Cell Line, Tumor
Cell Survival - drug effects
Coated Materials, Biocompatible - chemical synthesis
Coated Materials, Biocompatible - pharmacology
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Grafting and modifications
Humans
Immobilization of enzymes and other molecules
Immobilization techniques
Light
Methods. Procedures. Technologies
Physicochemistry of polymers
Plastics - chemistry
Polyethylene - chemistry
Polyethylene Glycols - chemistry
Polymers and radiations
Polystyrenes - chemistry
Spectroscopy, Fourier Transform Infrared
Surface Properties
title Creating “Living” Polymer Surfaces to Pattern Biomolecules and Cells on Common Plastics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creating%20%E2%80%9CLiving%E2%80%9D%20Polymer%20Surfaces%20to%20Pattern%20Biomolecules%20and%20Cells%20on%20Common%20Plastics&rft.jtitle=Biomacromolecules&rft.au=Li,%20Chunyan&rft.date=2013-05-13&rft.volume=14&rft.issue=5&rft.spage=1278&rft.epage=1286&rft.pages=1278-1286&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm4000597&rft_dat=%3Cproquest_cross%3E1524418871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1350891938&rft_id=info:pmid/23495918&rfr_iscdi=true