Pancreatic β cell proliferation by intermittent hypoxia via up-regulation of Reg family genes and HGF gene

Although accumulating evidence suggests the associations between sleep apnea syndrome (SAS) and type 2 diabetes, the direct effect of intermittent hypoxia (IH) on pancreatic β cell proliferation remains a missing piece of the puzzle. Rat RINm5F β cells, hamster HIT-T15 β cells, and human 1.1B4 β cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2013-11, Vol.93 (18-19), p.664-672
Hauptverfasser: Ota, Hiroyo, Itaya-Hironaka, Asako, Yamauchi, Akiyo, Sakuramoto-Tsuchida, Sumiyo, Miyaoka, Tomoko, Fujimura, Takanori, Tsujinaka, Hiroki, Yoshimoto, Kiyomi, Nakagawara, Kan-ichi, Tamaki, Shinji, Takasawa, Shin, Kimura, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 672
container_issue 18-19
container_start_page 664
container_title Life sciences (1973)
container_volume 93
creator Ota, Hiroyo
Itaya-Hironaka, Asako
Yamauchi, Akiyo
Sakuramoto-Tsuchida, Sumiyo
Miyaoka, Tomoko
Fujimura, Takanori
Tsujinaka, Hiroki
Yoshimoto, Kiyomi
Nakagawara, Kan-ichi
Tamaki, Shinji
Takasawa, Shin
Kimura, Hiroshi
description Although accumulating evidence suggests the associations between sleep apnea syndrome (SAS) and type 2 diabetes, the direct effect of intermittent hypoxia (IH) on pancreatic β cell proliferation remains a missing piece of the puzzle. Rat RINm5F β cells, hamster HIT-T15 β cells, and human 1.1B4 β cells were exposed to normoxia (21% O2, 5% CO2, and balance N2), to sustained hypoxia (SH: 1% O2, 5% CO2, and balance N2), or to intermittent hypoxia (IH: 64 cycles of 5 min SH and 10 min normoxia) for 24 h. After the treatment, cellular proliferation and apoptosis were measured by WST-8 assay and TUNEL method, respectively. The expression of regenerating gene (Reg) family, interleukin (IL)-6, and hepatocyte growth factor (HGF) was determined by real-time RT-PCR. The cellular proliferation of HIT-T15, RINm5F and 1.1B4 cells by IH was significantly increased, whereas apoptosis of these cells was unchanged. Real-time RT-PCR revealed that the mRNA levels of Reg family genes, IL-6, a typical Reg family gene inducer, and HGF, an inhibitor of high-concentration of Reg protein-induced apoptosis, were increased in IH-treated cells. In addition, siRNAs against rat Reg family genes except for PAP I/Reg 2 attenuated IH-induced β cell proliferation. IH stress stimulates pancreatic β cell to induce IL-6 gene expression. By the IL-6 stimulation, β cells over-express Reg family genes as well as HGF gene. Reg family proteins stimulate β cell proliferation and HGF inhibits apoptosis of β cells. As a result, β cell numbers are increased by IH.
doi_str_mv 10.1016/j.lfs.2013.09.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524417506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024320513005134</els_id><sourcerecordid>1443410013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-f55c7c07c3a3c277ca7a0408a99d9640d8d9d7d31f502a32f0424a7d414c4b2c3</originalsourceid><addsrcrecordid>eNqFkcuOEzEQRS0EYkLgA9iAl2y6Kb_ibrFCo3kgjQQCZm05djk49CPY3SPyW3wI34RDDyxhYdllnbqqupeQ5wxqBmzzel93IdccmKihrQHYA7JijW4r2Aj2kKwAuKwEB3VGnuS8BwCltHhMzrgsLyn1inz9YAeX0E7R0Z8_qMOuo4c0djFgKp_jQLdHGocJUx-nCYeJfjkexu_R0rty5kOVcDd3CzkG-hF3NNg-dke6wwEztYOn11eXv6un5FGwXcZn9_ea3F5efD6_rm7eX707f3tTOclgqoJSTjvQTljhuNbOagsSGtu2vt1I8I1vvfaCBQXcCh5Acmm1l0w6ueVOrMmrRbcs8m3GPJk-5tNmdsBxzoYpLiXTqrj0X1RKUYYqDheULahLY84Jgzmk2Nt0NAzMKQ6zNyUOc4rDQGtOTWvy4l5-3vbo_3b88b8ALxcg2NHYXYrZ3H4qCqp0b5pGQiHeLAQWx-4iJpNdxMGhjwndZPwY_zHAL7pBpBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443410013</pqid></control><display><type>article</type><title>Pancreatic β cell proliferation by intermittent hypoxia via up-regulation of Reg family genes and HGF gene</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ota, Hiroyo ; Itaya-Hironaka, Asako ; Yamauchi, Akiyo ; Sakuramoto-Tsuchida, Sumiyo ; Miyaoka, Tomoko ; Fujimura, Takanori ; Tsujinaka, Hiroki ; Yoshimoto, Kiyomi ; Nakagawara, Kan-ichi ; Tamaki, Shinji ; Takasawa, Shin ; Kimura, Hiroshi</creator><creatorcontrib>Ota, Hiroyo ; Itaya-Hironaka, Asako ; Yamauchi, Akiyo ; Sakuramoto-Tsuchida, Sumiyo ; Miyaoka, Tomoko ; Fujimura, Takanori ; Tsujinaka, Hiroki ; Yoshimoto, Kiyomi ; Nakagawara, Kan-ichi ; Tamaki, Shinji ; Takasawa, Shin ; Kimura, Hiroshi</creatorcontrib><description>Although accumulating evidence suggests the associations between sleep apnea syndrome (SAS) and type 2 diabetes, the direct effect of intermittent hypoxia (IH) on pancreatic β cell proliferation remains a missing piece of the puzzle. Rat RINm5F β cells, hamster HIT-T15 β cells, and human 1.1B4 β cells were exposed to normoxia (21% O2, 5% CO2, and balance N2), to sustained hypoxia (SH: 1% O2, 5% CO2, and balance N2), or to intermittent hypoxia (IH: 64 cycles of 5 min SH and 10 min normoxia) for 24 h. After the treatment, cellular proliferation and apoptosis were measured by WST-8 assay and TUNEL method, respectively. The expression of regenerating gene (Reg) family, interleukin (IL)-6, and hepatocyte growth factor (HGF) was determined by real-time RT-PCR. The cellular proliferation of HIT-T15, RINm5F and 1.1B4 cells by IH was significantly increased, whereas apoptosis of these cells was unchanged. Real-time RT-PCR revealed that the mRNA levels of Reg family genes, IL-6, a typical Reg family gene inducer, and HGF, an inhibitor of high-concentration of Reg protein-induced apoptosis, were increased in IH-treated cells. In addition, siRNAs against rat Reg family genes except for PAP I/Reg 2 attenuated IH-induced β cell proliferation. IH stress stimulates pancreatic β cell to induce IL-6 gene expression. By the IL-6 stimulation, β cells over-express Reg family genes as well as HGF gene. Reg family proteins stimulate β cell proliferation and HGF inhibits apoptosis of β cells. As a result, β cell numbers are increased by IH.</description><identifier>ISSN: 0024-3205</identifier><identifier>EISSN: 1879-0631</identifier><identifier>DOI: 10.1016/j.lfs.2013.09.001</identifier><identifier>PMID: 24055447</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Animals ; Apoptosis ; Apoptosis - genetics ; carbon dioxide ; Cell Hypoxia - genetics ; Cell Proliferation ; Cell Survival - genetics ; Cells, Cultured ; Cricetinae ; gene expression ; gene expression regulation ; genes ; hamsters ; Hepatocyte growth factor ; Hepatocyte Growth Factor - biosynthesis ; Hepatocyte Growth Factor - genetics ; Humans ; hypoxia ; Insulin-Secreting Cells - pathology ; Interleukin-6 ; Interleukin-6 - biosynthesis ; Interleukin-6 - genetics ; Intermittent hypoxia ; Lithostathine - biosynthesis ; Lithostathine - genetics ; Male ; messenger RNA ; nitrogen ; noninsulin-dependent diabetes mellitus ; normoxia ; oxygen ; Pancreatic β cell proliferation ; proteins ; Rats ; Rats, Wistar ; Regenerating gene ; reverse transcriptase polymerase chain reaction ; sleep apnea ; Sleep apnea syndrome ; small interfering RNA ; Time Factors ; Up-Regulation - genetics</subject><ispartof>Life sciences (1973), 2013-11, Vol.93 (18-19), p.664-672</ispartof><rights>2013 Elsevier Inc.</rights><rights>2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-f55c7c07c3a3c277ca7a0408a99d9640d8d9d7d31f502a32f0424a7d414c4b2c3</citedby><cites>FETCH-LOGICAL-c410t-f55c7c07c3a3c277ca7a0408a99d9640d8d9d7d31f502a32f0424a7d414c4b2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.lfs.2013.09.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24055447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ota, Hiroyo</creatorcontrib><creatorcontrib>Itaya-Hironaka, Asako</creatorcontrib><creatorcontrib>Yamauchi, Akiyo</creatorcontrib><creatorcontrib>Sakuramoto-Tsuchida, Sumiyo</creatorcontrib><creatorcontrib>Miyaoka, Tomoko</creatorcontrib><creatorcontrib>Fujimura, Takanori</creatorcontrib><creatorcontrib>Tsujinaka, Hiroki</creatorcontrib><creatorcontrib>Yoshimoto, Kiyomi</creatorcontrib><creatorcontrib>Nakagawara, Kan-ichi</creatorcontrib><creatorcontrib>Tamaki, Shinji</creatorcontrib><creatorcontrib>Takasawa, Shin</creatorcontrib><creatorcontrib>Kimura, Hiroshi</creatorcontrib><title>Pancreatic β cell proliferation by intermittent hypoxia via up-regulation of Reg family genes and HGF gene</title><title>Life sciences (1973)</title><addtitle>Life Sci</addtitle><description>Although accumulating evidence suggests the associations between sleep apnea syndrome (SAS) and type 2 diabetes, the direct effect of intermittent hypoxia (IH) on pancreatic β cell proliferation remains a missing piece of the puzzle. Rat RINm5F β cells, hamster HIT-T15 β cells, and human 1.1B4 β cells were exposed to normoxia (21% O2, 5% CO2, and balance N2), to sustained hypoxia (SH: 1% O2, 5% CO2, and balance N2), or to intermittent hypoxia (IH: 64 cycles of 5 min SH and 10 min normoxia) for 24 h. After the treatment, cellular proliferation and apoptosis were measured by WST-8 assay and TUNEL method, respectively. The expression of regenerating gene (Reg) family, interleukin (IL)-6, and hepatocyte growth factor (HGF) was determined by real-time RT-PCR. The cellular proliferation of HIT-T15, RINm5F and 1.1B4 cells by IH was significantly increased, whereas apoptosis of these cells was unchanged. Real-time RT-PCR revealed that the mRNA levels of Reg family genes, IL-6, a typical Reg family gene inducer, and HGF, an inhibitor of high-concentration of Reg protein-induced apoptosis, were increased in IH-treated cells. In addition, siRNAs against rat Reg family genes except for PAP I/Reg 2 attenuated IH-induced β cell proliferation. IH stress stimulates pancreatic β cell to induce IL-6 gene expression. By the IL-6 stimulation, β cells over-express Reg family genes as well as HGF gene. Reg family proteins stimulate β cell proliferation and HGF inhibits apoptosis of β cells. As a result, β cell numbers are increased by IH.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - genetics</subject><subject>carbon dioxide</subject><subject>Cell Hypoxia - genetics</subject><subject>Cell Proliferation</subject><subject>Cell Survival - genetics</subject><subject>Cells, Cultured</subject><subject>Cricetinae</subject><subject>gene expression</subject><subject>gene expression regulation</subject><subject>genes</subject><subject>hamsters</subject><subject>Hepatocyte growth factor</subject><subject>Hepatocyte Growth Factor - biosynthesis</subject><subject>Hepatocyte Growth Factor - genetics</subject><subject>Humans</subject><subject>hypoxia</subject><subject>Insulin-Secreting Cells - pathology</subject><subject>Interleukin-6</subject><subject>Interleukin-6 - biosynthesis</subject><subject>Interleukin-6 - genetics</subject><subject>Intermittent hypoxia</subject><subject>Lithostathine - biosynthesis</subject><subject>Lithostathine - genetics</subject><subject>Male</subject><subject>messenger RNA</subject><subject>nitrogen</subject><subject>noninsulin-dependent diabetes mellitus</subject><subject>normoxia</subject><subject>oxygen</subject><subject>Pancreatic β cell proliferation</subject><subject>proteins</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Regenerating gene</subject><subject>reverse transcriptase polymerase chain reaction</subject><subject>sleep apnea</subject><subject>Sleep apnea syndrome</subject><subject>small interfering RNA</subject><subject>Time Factors</subject><subject>Up-Regulation - genetics</subject><issn>0024-3205</issn><issn>1879-0631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcuOEzEQRS0EYkLgA9iAl2y6Kb_ibrFCo3kgjQQCZm05djk49CPY3SPyW3wI34RDDyxhYdllnbqqupeQ5wxqBmzzel93IdccmKihrQHYA7JijW4r2Aj2kKwAuKwEB3VGnuS8BwCltHhMzrgsLyn1inz9YAeX0E7R0Z8_qMOuo4c0djFgKp_jQLdHGocJUx-nCYeJfjkexu_R0rty5kOVcDd3CzkG-hF3NNg-dke6wwEztYOn11eXv6un5FGwXcZn9_ea3F5efD6_rm7eX707f3tTOclgqoJSTjvQTljhuNbOagsSGtu2vt1I8I1vvfaCBQXcCh5Acmm1l0w6ueVOrMmrRbcs8m3GPJk-5tNmdsBxzoYpLiXTqrj0X1RKUYYqDheULahLY84Jgzmk2Nt0NAzMKQ6zNyUOc4rDQGtOTWvy4l5-3vbo_3b88b8ALxcg2NHYXYrZ3H4qCqp0b5pGQiHeLAQWx-4iJpNdxMGhjwndZPwY_zHAL7pBpBk</recordid><startdate>20131104</startdate><enddate>20131104</enddate><creator>Ota, Hiroyo</creator><creator>Itaya-Hironaka, Asako</creator><creator>Yamauchi, Akiyo</creator><creator>Sakuramoto-Tsuchida, Sumiyo</creator><creator>Miyaoka, Tomoko</creator><creator>Fujimura, Takanori</creator><creator>Tsujinaka, Hiroki</creator><creator>Yoshimoto, Kiyomi</creator><creator>Nakagawara, Kan-ichi</creator><creator>Tamaki, Shinji</creator><creator>Takasawa, Shin</creator><creator>Kimura, Hiroshi</creator><general>Elsevier Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20131104</creationdate><title>Pancreatic β cell proliferation by intermittent hypoxia via up-regulation of Reg family genes and HGF gene</title><author>Ota, Hiroyo ; Itaya-Hironaka, Asako ; Yamauchi, Akiyo ; Sakuramoto-Tsuchida, Sumiyo ; Miyaoka, Tomoko ; Fujimura, Takanori ; Tsujinaka, Hiroki ; Yoshimoto, Kiyomi ; Nakagawara, Kan-ichi ; Tamaki, Shinji ; Takasawa, Shin ; Kimura, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-f55c7c07c3a3c277ca7a0408a99d9640d8d9d7d31f502a32f0424a7d414c4b2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - genetics</topic><topic>carbon dioxide</topic><topic>Cell Hypoxia - genetics</topic><topic>Cell Proliferation</topic><topic>Cell Survival - genetics</topic><topic>Cells, Cultured</topic><topic>Cricetinae</topic><topic>gene expression</topic><topic>gene expression regulation</topic><topic>genes</topic><topic>hamsters</topic><topic>Hepatocyte growth factor</topic><topic>Hepatocyte Growth Factor - biosynthesis</topic><topic>Hepatocyte Growth Factor - genetics</topic><topic>Humans</topic><topic>hypoxia</topic><topic>Insulin-Secreting Cells - pathology</topic><topic>Interleukin-6</topic><topic>Interleukin-6 - biosynthesis</topic><topic>Interleukin-6 - genetics</topic><topic>Intermittent hypoxia</topic><topic>Lithostathine - biosynthesis</topic><topic>Lithostathine - genetics</topic><topic>Male</topic><topic>messenger RNA</topic><topic>nitrogen</topic><topic>noninsulin-dependent diabetes mellitus</topic><topic>normoxia</topic><topic>oxygen</topic><topic>Pancreatic β cell proliferation</topic><topic>proteins</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Regenerating gene</topic><topic>reverse transcriptase polymerase chain reaction</topic><topic>sleep apnea</topic><topic>Sleep apnea syndrome</topic><topic>small interfering RNA</topic><topic>Time Factors</topic><topic>Up-Regulation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ota, Hiroyo</creatorcontrib><creatorcontrib>Itaya-Hironaka, Asako</creatorcontrib><creatorcontrib>Yamauchi, Akiyo</creatorcontrib><creatorcontrib>Sakuramoto-Tsuchida, Sumiyo</creatorcontrib><creatorcontrib>Miyaoka, Tomoko</creatorcontrib><creatorcontrib>Fujimura, Takanori</creatorcontrib><creatorcontrib>Tsujinaka, Hiroki</creatorcontrib><creatorcontrib>Yoshimoto, Kiyomi</creatorcontrib><creatorcontrib>Nakagawara, Kan-ichi</creatorcontrib><creatorcontrib>Tamaki, Shinji</creatorcontrib><creatorcontrib>Takasawa, Shin</creatorcontrib><creatorcontrib>Kimura, Hiroshi</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Life sciences (1973)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ota, Hiroyo</au><au>Itaya-Hironaka, Asako</au><au>Yamauchi, Akiyo</au><au>Sakuramoto-Tsuchida, Sumiyo</au><au>Miyaoka, Tomoko</au><au>Fujimura, Takanori</au><au>Tsujinaka, Hiroki</au><au>Yoshimoto, Kiyomi</au><au>Nakagawara, Kan-ichi</au><au>Tamaki, Shinji</au><au>Takasawa, Shin</au><au>Kimura, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pancreatic β cell proliferation by intermittent hypoxia via up-regulation of Reg family genes and HGF gene</atitle><jtitle>Life sciences (1973)</jtitle><addtitle>Life Sci</addtitle><date>2013-11-04</date><risdate>2013</risdate><volume>93</volume><issue>18-19</issue><spage>664</spage><epage>672</epage><pages>664-672</pages><issn>0024-3205</issn><eissn>1879-0631</eissn><abstract>Although accumulating evidence suggests the associations between sleep apnea syndrome (SAS) and type 2 diabetes, the direct effect of intermittent hypoxia (IH) on pancreatic β cell proliferation remains a missing piece of the puzzle. Rat RINm5F β cells, hamster HIT-T15 β cells, and human 1.1B4 β cells were exposed to normoxia (21% O2, 5% CO2, and balance N2), to sustained hypoxia (SH: 1% O2, 5% CO2, and balance N2), or to intermittent hypoxia (IH: 64 cycles of 5 min SH and 10 min normoxia) for 24 h. After the treatment, cellular proliferation and apoptosis were measured by WST-8 assay and TUNEL method, respectively. The expression of regenerating gene (Reg) family, interleukin (IL)-6, and hepatocyte growth factor (HGF) was determined by real-time RT-PCR. The cellular proliferation of HIT-T15, RINm5F and 1.1B4 cells by IH was significantly increased, whereas apoptosis of these cells was unchanged. Real-time RT-PCR revealed that the mRNA levels of Reg family genes, IL-6, a typical Reg family gene inducer, and HGF, an inhibitor of high-concentration of Reg protein-induced apoptosis, were increased in IH-treated cells. In addition, siRNAs against rat Reg family genes except for PAP I/Reg 2 attenuated IH-induced β cell proliferation. IH stress stimulates pancreatic β cell to induce IL-6 gene expression. By the IL-6 stimulation, β cells over-express Reg family genes as well as HGF gene. Reg family proteins stimulate β cell proliferation and HGF inhibits apoptosis of β cells. As a result, β cell numbers are increased by IH.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>24055447</pmid><doi>10.1016/j.lfs.2013.09.001</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-3205
ispartof Life sciences (1973), 2013-11, Vol.93 (18-19), p.664-672
issn 0024-3205
1879-0631
language eng
recordid cdi_proquest_miscellaneous_1524417506
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Apoptosis
Apoptosis - genetics
carbon dioxide
Cell Hypoxia - genetics
Cell Proliferation
Cell Survival - genetics
Cells, Cultured
Cricetinae
gene expression
gene expression regulation
genes
hamsters
Hepatocyte growth factor
Hepatocyte Growth Factor - biosynthesis
Hepatocyte Growth Factor - genetics
Humans
hypoxia
Insulin-Secreting Cells - pathology
Interleukin-6
Interleukin-6 - biosynthesis
Interleukin-6 - genetics
Intermittent hypoxia
Lithostathine - biosynthesis
Lithostathine - genetics
Male
messenger RNA
nitrogen
noninsulin-dependent diabetes mellitus
normoxia
oxygen
Pancreatic β cell proliferation
proteins
Rats
Rats, Wistar
Regenerating gene
reverse transcriptase polymerase chain reaction
sleep apnea
Sleep apnea syndrome
small interfering RNA
Time Factors
Up-Regulation - genetics
title Pancreatic β cell proliferation by intermittent hypoxia via up-regulation of Reg family genes and HGF gene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pancreatic%20%CE%B2%20cell%20proliferation%20by%20intermittent%20hypoxia%20via%20up-regulation%20of%20Reg%20family%20genes%20and%20HGF%20gene&rft.jtitle=Life%20sciences%20(1973)&rft.au=Ota,%20Hiroyo&rft.date=2013-11-04&rft.volume=93&rft.issue=18-19&rft.spage=664&rft.epage=672&rft.pages=664-672&rft.issn=0024-3205&rft.eissn=1879-0631&rft_id=info:doi/10.1016/j.lfs.2013.09.001&rft_dat=%3Cproquest_cross%3E1443410013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443410013&rft_id=info:pmid/24055447&rft_els_id=S0024320513005134&rfr_iscdi=true