Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii

KEY MESSAGE : Chromosomes 5A ᵘ , 5S and 5D can be isolated from wild progenitors, providing a chromosome-based approach to develop tools for breeding and to study the genome evolution of wheat. The three subgenomes of hexaploid bread wheat originated from Triticum urartu (AᵘAᵘ), from a species simil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied genetics 2014-05, Vol.127 (5), p.1091-1104
Hauptverfasser: Molnár, István, Kubaláková, Marie, imková, Hana, Farkas, András, Cseh, András, Megyeri, Mária, Vrána, Jan, Molnár-Láng, Márta, Doležel, Jaroslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1104
container_issue 5
container_start_page 1091
container_title Theoretical and applied genetics
container_volume 127
creator Molnár, István
Kubaláková, Marie
imková, Hana
Farkas, András
Cseh, András
Megyeri, Mária
Vrána, Jan
Molnár-Láng, Márta
Doležel, Jaroslav
description KEY MESSAGE : Chromosomes 5A ᵘ , 5S and 5D can be isolated from wild progenitors, providing a chromosome-based approach to develop tools for breeding and to study the genome evolution of wheat. The three subgenomes of hexaploid bread wheat originated from Triticum urartu (AᵘAᵘ), from a species similar to Aegilops speltoides (SS) (progenitor of the B genome), and from Ae. tauschii (DD). Earlier studies indicated the potential of chromosome genomics to assist gene transfer from wild relatives of wheat and discover novel genes for wheat improvement. This study evaluates the potential of flow cytometric chromosome sorting in the diploid progenitors of bread wheat. Flow karyotypes obtained by analysing DAPI-stained chromosomes were characterized and the contents of the chromosome peaks were determined. FISH analysis with repetitive DNA probes proved that chromosomes 5Aᵘ, 5S and 5D could be sorted with purities of 78–90 %, while the remaining chromosomes could be sorted in groups of three. Twenty-five conserved orthologous set (COS) markers covering wheat homoeologous chromosome groups 1–7 were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. These assays validated the cytomolecular results as follows: peak I on flow karyotypes contained chromosome groups 1, 4 and 6, peak II represented homoeologous group 5, while peak III consisted of groups 2, 3 and 7. The isolation of individual chromosomes of wild progenitors provides an attractive opportunity to investigate the structure and evolution of the polyploid genome and to deliver tools for wheat improvement.
doi_str_mv 10.1007/s00122-014-2282-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524408330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A369462051</galeid><sourcerecordid>A369462051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c643t-8a89b2f4238901500d39653f370d199c4ac82041e2d9a87f62c72fda29ac56323</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdR7Fr9Ad5owBuFznpykvm6XIrVQkGw7XXIZpLZlJnJmmSs_fdmnPqxIiK5SHLyvC_nhDfLnlNYU4DqbQCgiDlQniPWmOODbEU5Swfk-DBbAXDIi6rAo-xJCDcAgAWwx9kR8qJgTclX2Zez3t0SdRfdoKO3iqidd4ML6UqC89GOHTGpQlq7751tyd67To82Oh-IM2TrtWzJ7U7LeEKu1mTy0sfphGz0moS97mPS6EDk2H4vRTkFtbP2afbIyD7oZ_f7cXZ99u7q9EN-8fH9-enmIlclZzGvZd1s0XBkdQO0AGhT1wUzrIKWNo3iUtUInGpsG1lXpkRVoWklNlIVJUN2nL1efFPbnycdohhsULrv5ajdFAQtkHOoGYP_QGmDJQKWCX31B3rjJj-mQWaqLoExCr-oTvZa2NG46KWaTcWGlQ1PXgVN1PovVFqtHqxyozY21Q8Ebw4EiYn6a-zSzwZxfvnpkKULq7wLwWsj9t4O0t8JCmKOkFgiJFKExBwhMX_Zi_vhpu2g25-KH5lJAC5ASE9jp_1v0__D9eUiMtIJ2XkbxPUlJiCFsq5Yxdg3HkXVZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518603310</pqid></control><display><type>article</type><title>Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Molnár, István ; Kubaláková, Marie ; imková, Hana ; Farkas, András ; Cseh, András ; Megyeri, Mária ; Vrána, Jan ; Molnár-Láng, Márta ; Doležel, Jaroslav</creator><creatorcontrib>Molnár, István ; Kubaláková, Marie ; imková, Hana ; Farkas, András ; Cseh, András ; Megyeri, Mária ; Vrána, Jan ; Molnár-Láng, Márta ; Doležel, Jaroslav</creatorcontrib><description>KEY MESSAGE : Chromosomes 5A ᵘ , 5S and 5D can be isolated from wild progenitors, providing a chromosome-based approach to develop tools for breeding and to study the genome evolution of wheat. The three subgenomes of hexaploid bread wheat originated from Triticum urartu (AᵘAᵘ), from a species similar to Aegilops speltoides (SS) (progenitor of the B genome), and from Ae. tauschii (DD). Earlier studies indicated the potential of chromosome genomics to assist gene transfer from wild relatives of wheat and discover novel genes for wheat improvement. This study evaluates the potential of flow cytometric chromosome sorting in the diploid progenitors of bread wheat. Flow karyotypes obtained by analysing DAPI-stained chromosomes were characterized and the contents of the chromosome peaks were determined. FISH analysis with repetitive DNA probes proved that chromosomes 5Aᵘ, 5S and 5D could be sorted with purities of 78–90 %, while the remaining chromosomes could be sorted in groups of three. Twenty-five conserved orthologous set (COS) markers covering wheat homoeologous chromosome groups 1–7 were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. These assays validated the cytomolecular results as follows: peak I on flow karyotypes contained chromosome groups 1, 4 and 6, peak II represented homoeologous group 5, while peak III consisted of groups 2, 3 and 7. The isolation of individual chromosomes of wild progenitors provides an attractive opportunity to investigate the structure and evolution of the polyploid genome and to deliver tools for wheat improvement.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-014-2282-2</identifier><identifier>PMID: 24553964</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Aegilops ; Aegilops speltoides ; Agricultural research ; Agriculture ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; breeding ; Chromosomes ; Chromosomes, Plant - metabolism ; Diploidy ; DNA ; DNA probes ; Evolution ; Flow Cytometry ; fluorescence in situ hybridization ; gene transfer ; Genes ; Genetic aspects ; Genetic research ; Genome, Plant ; Genomes ; Genomics ; Goat grass ; hexaploidy ; Hybridization ; In Situ Hybridization, Fluorescence ; karyotyping ; Karyotyping - methods ; Life Sciences ; Original Paper ; Physiological aspects ; Plant Biochemistry ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; polymerase chain reaction ; sorting ; Triticum ; Triticum - genetics ; Triticum aestivum ; Triticum urartu ; Wheat ; wild relatives</subject><ispartof>Theoretical and applied genetics, 2014-05, Vol.127 (5), p.1091-1104</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c643t-8a89b2f4238901500d39653f370d199c4ac82041e2d9a87f62c72fda29ac56323</citedby><cites>FETCH-LOGICAL-c643t-8a89b2f4238901500d39653f370d199c4ac82041e2d9a87f62c72fda29ac56323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-014-2282-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-014-2282-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24553964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Molnár, István</creatorcontrib><creatorcontrib>Kubaláková, Marie</creatorcontrib><creatorcontrib>imková, Hana</creatorcontrib><creatorcontrib>Farkas, András</creatorcontrib><creatorcontrib>Cseh, András</creatorcontrib><creatorcontrib>Megyeri, Mária</creatorcontrib><creatorcontrib>Vrána, Jan</creatorcontrib><creatorcontrib>Molnár-Láng, Márta</creatorcontrib><creatorcontrib>Doležel, Jaroslav</creatorcontrib><title>Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>KEY MESSAGE : Chromosomes 5A ᵘ , 5S and 5D can be isolated from wild progenitors, providing a chromosome-based approach to develop tools for breeding and to study the genome evolution of wheat. The three subgenomes of hexaploid bread wheat originated from Triticum urartu (AᵘAᵘ), from a species similar to Aegilops speltoides (SS) (progenitor of the B genome), and from Ae. tauschii (DD). Earlier studies indicated the potential of chromosome genomics to assist gene transfer from wild relatives of wheat and discover novel genes for wheat improvement. This study evaluates the potential of flow cytometric chromosome sorting in the diploid progenitors of bread wheat. Flow karyotypes obtained by analysing DAPI-stained chromosomes were characterized and the contents of the chromosome peaks were determined. FISH analysis with repetitive DNA probes proved that chromosomes 5Aᵘ, 5S and 5D could be sorted with purities of 78–90 %, while the remaining chromosomes could be sorted in groups of three. Twenty-five conserved orthologous set (COS) markers covering wheat homoeologous chromosome groups 1–7 were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. These assays validated the cytomolecular results as follows: peak I on flow karyotypes contained chromosome groups 1, 4 and 6, peak II represented homoeologous group 5, while peak III consisted of groups 2, 3 and 7. The isolation of individual chromosomes of wild progenitors provides an attractive opportunity to investigate the structure and evolution of the polyploid genome and to deliver tools for wheat improvement.</description><subject>Aegilops</subject><subject>Aegilops speltoides</subject><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>breeding</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant - metabolism</subject><subject>Diploidy</subject><subject>DNA</subject><subject>DNA probes</subject><subject>Evolution</subject><subject>Flow Cytometry</subject><subject>fluorescence in situ hybridization</subject><subject>gene transfer</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Goat grass</subject><subject>hexaploidy</subject><subject>Hybridization</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>karyotyping</subject><subject>Karyotyping - methods</subject><subject>Life Sciences</subject><subject>Original Paper</subject><subject>Physiological aspects</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>polymerase chain reaction</subject><subject>sorting</subject><subject>Triticum</subject><subject>Triticum - genetics</subject><subject>Triticum aestivum</subject><subject>Triticum urartu</subject><subject>Wheat</subject><subject>wild relatives</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl1rFDEUhgdR7Fr9Ad5owBuFznpykvm6XIrVQkGw7XXIZpLZlJnJmmSs_fdmnPqxIiK5SHLyvC_nhDfLnlNYU4DqbQCgiDlQniPWmOODbEU5Swfk-DBbAXDIi6rAo-xJCDcAgAWwx9kR8qJgTclX2Zez3t0SdRfdoKO3iqidd4ML6UqC89GOHTGpQlq7751tyd67To82Oh-IM2TrtWzJ7U7LeEKu1mTy0sfphGz0moS97mPS6EDk2H4vRTkFtbP2afbIyD7oZ_f7cXZ99u7q9EN-8fH9-enmIlclZzGvZd1s0XBkdQO0AGhT1wUzrIKWNo3iUtUInGpsG1lXpkRVoWklNlIVJUN2nL1efFPbnycdohhsULrv5ajdFAQtkHOoGYP_QGmDJQKWCX31B3rjJj-mQWaqLoExCr-oTvZa2NG46KWaTcWGlQ1PXgVN1PovVFqtHqxyozY21Q8Ebw4EiYn6a-zSzwZxfvnpkKULq7wLwWsj9t4O0t8JCmKOkFgiJFKExBwhMX_Zi_vhpu2g25-KH5lJAC5ASE9jp_1v0__D9eUiMtIJ2XkbxPUlJiCFsq5Yxdg3HkXVZA</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Molnár, István</creator><creator>Kubaláková, Marie</creator><creator>imková, Hana</creator><creator>Farkas, András</creator><creator>Cseh, András</creator><creator>Megyeri, Mária</creator><creator>Vrána, Jan</creator><creator>Molnár-Láng, Márta</creator><creator>Doležel, Jaroslav</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140501</creationdate><title>Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii</title><author>Molnár, István ; Kubaláková, Marie ; imková, Hana ; Farkas, András ; Cseh, András ; Megyeri, Mária ; Vrána, Jan ; Molnár-Láng, Márta ; Doležel, Jaroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c643t-8a89b2f4238901500d39653f370d199c4ac82041e2d9a87f62c72fda29ac56323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aegilops</topic><topic>Aegilops speltoides</topic><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>breeding</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant - metabolism</topic><topic>Diploidy</topic><topic>DNA</topic><topic>DNA probes</topic><topic>Evolution</topic><topic>Flow Cytometry</topic><topic>fluorescence in situ hybridization</topic><topic>gene transfer</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Goat grass</topic><topic>hexaploidy</topic><topic>Hybridization</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>karyotyping</topic><topic>Karyotyping - methods</topic><topic>Life Sciences</topic><topic>Original Paper</topic><topic>Physiological aspects</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>polymerase chain reaction</topic><topic>sorting</topic><topic>Triticum</topic><topic>Triticum - genetics</topic><topic>Triticum aestivum</topic><topic>Triticum urartu</topic><topic>Wheat</topic><topic>wild relatives</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molnár, István</creatorcontrib><creatorcontrib>Kubaláková, Marie</creatorcontrib><creatorcontrib>imková, Hana</creatorcontrib><creatorcontrib>Farkas, András</creatorcontrib><creatorcontrib>Cseh, András</creatorcontrib><creatorcontrib>Megyeri, Mária</creatorcontrib><creatorcontrib>Vrána, Jan</creatorcontrib><creatorcontrib>Molnár-Láng, Márta</creatorcontrib><creatorcontrib>Doležel, Jaroslav</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molnár, István</au><au>Kubaláková, Marie</au><au>imková, Hana</au><au>Farkas, András</au><au>Cseh, András</au><au>Megyeri, Mária</au><au>Vrána, Jan</au><au>Molnár-Láng, Márta</au><au>Doležel, Jaroslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>127</volume><issue>5</issue><spage>1091</spage><epage>1104</epage><pages>1091-1104</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>KEY MESSAGE : Chromosomes 5A ᵘ , 5S and 5D can be isolated from wild progenitors, providing a chromosome-based approach to develop tools for breeding and to study the genome evolution of wheat. The three subgenomes of hexaploid bread wheat originated from Triticum urartu (AᵘAᵘ), from a species similar to Aegilops speltoides (SS) (progenitor of the B genome), and from Ae. tauschii (DD). Earlier studies indicated the potential of chromosome genomics to assist gene transfer from wild relatives of wheat and discover novel genes for wheat improvement. This study evaluates the potential of flow cytometric chromosome sorting in the diploid progenitors of bread wheat. Flow karyotypes obtained by analysing DAPI-stained chromosomes were characterized and the contents of the chromosome peaks were determined. FISH analysis with repetitive DNA probes proved that chromosomes 5Aᵘ, 5S and 5D could be sorted with purities of 78–90 %, while the remaining chromosomes could be sorted in groups of three. Twenty-five conserved orthologous set (COS) markers covering wheat homoeologous chromosome groups 1–7 were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. These assays validated the cytomolecular results as follows: peak I on flow karyotypes contained chromosome groups 1, 4 and 6, peak II represented homoeologous group 5, while peak III consisted of groups 2, 3 and 7. The isolation of individual chromosomes of wild progenitors provides an attractive opportunity to investigate the structure and evolution of the polyploid genome and to deliver tools for wheat improvement.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24553964</pmid><doi>10.1007/s00122-014-2282-2</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2014-05, Vol.127 (5), p.1091-1104
issn 0040-5752
1432-2242
language eng
recordid cdi_proquest_miscellaneous_1524408330
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Aegilops
Aegilops speltoides
Agricultural research
Agriculture
Biochemistry
Biomedical and Life Sciences
Biotechnology
breeding
Chromosomes
Chromosomes, Plant - metabolism
Diploidy
DNA
DNA probes
Evolution
Flow Cytometry
fluorescence in situ hybridization
gene transfer
Genes
Genetic aspects
Genetic research
Genome, Plant
Genomes
Genomics
Goat grass
hexaploidy
Hybridization
In Situ Hybridization, Fluorescence
karyotyping
Karyotyping - methods
Life Sciences
Original Paper
Physiological aspects
Plant Biochemistry
Plant Breeding/Biotechnology
Plant Genetics and Genomics
polymerase chain reaction
sorting
Triticum
Triticum - genetics
Triticum aestivum
Triticum urartu
Wheat
wild relatives
title Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20cytometric%20chromosome%20sorting%20from%20diploid%20progenitors%20of%20bread%20wheat,%20T.%20urartu,%20Ae.%20speltoides%20and%20Ae.%20tauschii&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Moln%C3%A1r,%20Istv%C3%A1n&rft.date=2014-05-01&rft.volume=127&rft.issue=5&rft.spage=1091&rft.epage=1104&rft.pages=1091-1104&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-014-2282-2&rft_dat=%3Cgale_proqu%3EA369462051%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518603310&rft_id=info:pmid/24553964&rft_galeid=A369462051&rfr_iscdi=true