In Vitro Biocompatibility and Antimicrobial Activity of Poly(ε-caprolactone)/Montmorillonite Nanocomposites

A triblock copolymer based on poly(ε-caprolactone) (PCL) and 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA)/2-(methyl-7-nitrobenzofurazan)amino ethyl acrylate (NBD-NAcri), was synthesized via atom transfer radical polymerization (ATRP). The corresponding chlorohydrated copolymer, named as PCL-b-DEA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2012-12, Vol.13 (12), p.4247-4256
Hauptverfasser: Corrales, T, Larraza, I, Catalina, F, Portolés, T, Ramírez-Santillán, C, Matesanz, M, Abrusci, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4256
container_issue 12
container_start_page 4247
container_title Biomacromolecules
container_volume 13
creator Corrales, T
Larraza, I
Catalina, F
Portolés, T
Ramírez-Santillán, C
Matesanz, M
Abrusci, C
description A triblock copolymer based on poly(ε-caprolactone) (PCL) and 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA)/2-(methyl-7-nitrobenzofurazan)amino ethyl acrylate (NBD-NAcri), was synthesized via atom transfer radical polymerization (ATRP). The corresponding chlorohydrated copolymer, named as PCL-b-DEAEMA, was prepared and anchored via cationic exchange on montmorillonite (MMT) surface. (PCL)/layered silicate nanocomposites were prepared through melt intercalation, and XRD and TEM analysis showed an exfoliated/intercalated morphology for organomodified clay. The surface characterization of the nanocomposites was undertaken by using contact angle and AFM. An increase in the contact angle was observed in the PCL/MMT(PCL‑b‑DEAEMA) nanocomposites with respect to PCL. The AFM analysis showed that the surface of the nanocomposites became rougher with respect to the PCL when MMTk10 or MMT(PCL‑b‑DEAEMA) was incorporated, and the value increased with the clay content. The antimicrobial activity of the nanocomposites against B. subtilis and P. putida was tested. It is remarkable that the biodegradation of PCL/MMT(PCL‑b‑DEAEMA) nanocomposites, monitored by the production of carbon dioxide and by chemiluminescence emission, was inhibited or retarded with respect to the PCL and PCL/1-MMTk10. It would indicate that nature of organomodifier in the clay play an important role in B. subtilis and P. putida adhesion processes. Biocompatibility studies demonstrate that both PCL and PCL/MMT materials allow the culture of murine L929 fibroblasts on its surface with high viability, very low apoptosis, and without plasma membrane damage, making these materials very adequate for tissue engineering.
doi_str_mv 10.1021/bm301537g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524405254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1237091989</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-21f7aabd46d00a35e51d090d1592ccf735330898c61a1682d09f79dfc6c18da3</originalsourceid><addsrcrecordid>eNqFkctKxDAUhoMoznhZ-ALSjaCLai5t0yxH8QbeFuK2nKapRNJkTDLCPJiv4TMZdZzZCK5ywvn4z-E7CO0RfEwwJSftwDApGX9eQ2NS0iovKkzXv-sy51zwEdoK4QVjLFhRbqIRZQnHpB4jc22zJx29y061k26YQtStNjrOM7BdNrFRD1p612ow2URG_fbVcn324Mz88OM9lzD1zoCMzqqjk1tn4-C8NsZZHVV2B_Y71YX0CztoowcT1O7i3UaPF-ePZ1f5zf3l9dnkJgfG65hT0nOAtiuqDmNgpSpJhwXuSCmolD1nJWO4FrWsCJCqpqnZc9H1spKk7oBto8Of2LTZ60yF2Aw6SGUMWOVmoUlaigInN8X_KGUcCyJqkdCjHzTZCMGrvpl6PYCfNwQ3X2dolmdI7P4idtYOqluSv94TcLAAIEgwvQcrdVhxFaeVKIoVBzI0L27mbfL2x8BPDZWc1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1237091989</pqid></control><display><type>article</type><title>In Vitro Biocompatibility and Antimicrobial Activity of Poly(ε-caprolactone)/Montmorillonite Nanocomposites</title><source>MEDLINE</source><source>ACS Publications</source><creator>Corrales, T ; Larraza, I ; Catalina, F ; Portolés, T ; Ramírez-Santillán, C ; Matesanz, M ; Abrusci, C</creator><creatorcontrib>Corrales, T ; Larraza, I ; Catalina, F ; Portolés, T ; Ramírez-Santillán, C ; Matesanz, M ; Abrusci, C</creatorcontrib><description>A triblock copolymer based on poly(ε-caprolactone) (PCL) and 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA)/2-(methyl-7-nitrobenzofurazan)amino ethyl acrylate (NBD-NAcri), was synthesized via atom transfer radical polymerization (ATRP). The corresponding chlorohydrated copolymer, named as PCL-b-DEAEMA, was prepared and anchored via cationic exchange on montmorillonite (MMT) surface. (PCL)/layered silicate nanocomposites were prepared through melt intercalation, and XRD and TEM analysis showed an exfoliated/intercalated morphology for organomodified clay. The surface characterization of the nanocomposites was undertaken by using contact angle and AFM. An increase in the contact angle was observed in the PCL/MMT(PCL‑b‑DEAEMA) nanocomposites with respect to PCL. The AFM analysis showed that the surface of the nanocomposites became rougher with respect to the PCL when MMTk10 or MMT(PCL‑b‑DEAEMA) was incorporated, and the value increased with the clay content. The antimicrobial activity of the nanocomposites against B. subtilis and P. putida was tested. It is remarkable that the biodegradation of PCL/MMT(PCL‑b‑DEAEMA) nanocomposites, monitored by the production of carbon dioxide and by chemiluminescence emission, was inhibited or retarded with respect to the PCL and PCL/1-MMTk10. It would indicate that nature of organomodifier in the clay play an important role in B. subtilis and P. putida adhesion processes. Biocompatibility studies demonstrate that both PCL and PCL/MMT materials allow the culture of murine L929 fibroblasts on its surface with high viability, very low apoptosis, and without plasma membrane damage, making these materials very adequate for tissue engineering.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm301537g</identifier><identifier>PMID: 23153018</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Animals ; Anti-Infective Agents - chemical synthesis ; Anti-Infective Agents - pharmacology ; Apoptosis ; Applied sciences ; Bacillus subtilis - drug effects ; Bentonite - chemical synthesis ; Bentonite - pharmacology ; Biocompatible Materials - chemical synthesis ; Calorimetry, Differential Scanning ; Cell Adhesion - drug effects ; Cell Line ; Cell Proliferation - drug effects ; Cell Survival ; Composites ; Exact sciences and technology ; Flow Cytometry ; Forms of application and semi-finished materials ; L-Lactate Dehydrogenase - metabolism ; Mice ; Nanocomposites - chemistry ; Polyesters - chemical synthesis ; Polyesters - pharmacology ; Polymer industry, paints, wood ; Pseudomonas putida - drug effects ; Silicates - chemistry ; Technology of polymers ; X-Ray Diffraction</subject><ispartof>Biomacromolecules, 2012-12, Vol.13 (12), p.4247-4256</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-21f7aabd46d00a35e51d090d1592ccf735330898c61a1682d09f79dfc6c18da3</citedby><cites>FETCH-LOGICAL-a378t-21f7aabd46d00a35e51d090d1592ccf735330898c61a1682d09f79dfc6c18da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm301537g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm301537g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26726944$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23153018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Corrales, T</creatorcontrib><creatorcontrib>Larraza, I</creatorcontrib><creatorcontrib>Catalina, F</creatorcontrib><creatorcontrib>Portolés, T</creatorcontrib><creatorcontrib>Ramírez-Santillán, C</creatorcontrib><creatorcontrib>Matesanz, M</creatorcontrib><creatorcontrib>Abrusci, C</creatorcontrib><title>In Vitro Biocompatibility and Antimicrobial Activity of Poly(ε-caprolactone)/Montmorillonite Nanocomposites</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>A triblock copolymer based on poly(ε-caprolactone) (PCL) and 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA)/2-(methyl-7-nitrobenzofurazan)amino ethyl acrylate (NBD-NAcri), was synthesized via atom transfer radical polymerization (ATRP). The corresponding chlorohydrated copolymer, named as PCL-b-DEAEMA, was prepared and anchored via cationic exchange on montmorillonite (MMT) surface. (PCL)/layered silicate nanocomposites were prepared through melt intercalation, and XRD and TEM analysis showed an exfoliated/intercalated morphology for organomodified clay. The surface characterization of the nanocomposites was undertaken by using contact angle and AFM. An increase in the contact angle was observed in the PCL/MMT(PCL‑b‑DEAEMA) nanocomposites with respect to PCL. The AFM analysis showed that the surface of the nanocomposites became rougher with respect to the PCL when MMTk10 or MMT(PCL‑b‑DEAEMA) was incorporated, and the value increased with the clay content. The antimicrobial activity of the nanocomposites against B. subtilis and P. putida was tested. It is remarkable that the biodegradation of PCL/MMT(PCL‑b‑DEAEMA) nanocomposites, monitored by the production of carbon dioxide and by chemiluminescence emission, was inhibited or retarded with respect to the PCL and PCL/1-MMTk10. It would indicate that nature of organomodifier in the clay play an important role in B. subtilis and P. putida adhesion processes. Biocompatibility studies demonstrate that both PCL and PCL/MMT materials allow the culture of murine L929 fibroblasts on its surface with high viability, very low apoptosis, and without plasma membrane damage, making these materials very adequate for tissue engineering.</description><subject>Animals</subject><subject>Anti-Infective Agents - chemical synthesis</subject><subject>Anti-Infective Agents - pharmacology</subject><subject>Apoptosis</subject><subject>Applied sciences</subject><subject>Bacillus subtilis - drug effects</subject><subject>Bentonite - chemical synthesis</subject><subject>Bentonite - pharmacology</subject><subject>Biocompatible Materials - chemical synthesis</subject><subject>Calorimetry, Differential Scanning</subject><subject>Cell Adhesion - drug effects</subject><subject>Cell Line</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Flow Cytometry</subject><subject>Forms of application and semi-finished materials</subject><subject>L-Lactate Dehydrogenase - metabolism</subject><subject>Mice</subject><subject>Nanocomposites - chemistry</subject><subject>Polyesters - chemical synthesis</subject><subject>Polyesters - pharmacology</subject><subject>Polymer industry, paints, wood</subject><subject>Pseudomonas putida - drug effects</subject><subject>Silicates - chemistry</subject><subject>Technology of polymers</subject><subject>X-Ray Diffraction</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctKxDAUhoMoznhZ-ALSjaCLai5t0yxH8QbeFuK2nKapRNJkTDLCPJiv4TMZdZzZCK5ywvn4z-E7CO0RfEwwJSftwDApGX9eQ2NS0iovKkzXv-sy51zwEdoK4QVjLFhRbqIRZQnHpB4jc22zJx29y061k26YQtStNjrOM7BdNrFRD1p612ow2URG_fbVcn324Mz88OM9lzD1zoCMzqqjk1tn4-C8NsZZHVV2B_Y71YX0CztoowcT1O7i3UaPF-ePZ1f5zf3l9dnkJgfG65hT0nOAtiuqDmNgpSpJhwXuSCmolD1nJWO4FrWsCJCqpqnZc9H1spKk7oBto8Of2LTZ60yF2Aw6SGUMWOVmoUlaigInN8X_KGUcCyJqkdCjHzTZCMGrvpl6PYCfNwQ3X2dolmdI7P4idtYOqluSv94TcLAAIEgwvQcrdVhxFaeVKIoVBzI0L27mbfL2x8BPDZWc1A</recordid><startdate>20121210</startdate><enddate>20121210</enddate><creator>Corrales, T</creator><creator>Larraza, I</creator><creator>Catalina, F</creator><creator>Portolés, T</creator><creator>Ramírez-Santillán, C</creator><creator>Matesanz, M</creator><creator>Abrusci, C</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20121210</creationdate><title>In Vitro Biocompatibility and Antimicrobial Activity of Poly(ε-caprolactone)/Montmorillonite Nanocomposites</title><author>Corrales, T ; Larraza, I ; Catalina, F ; Portolés, T ; Ramírez-Santillán, C ; Matesanz, M ; Abrusci, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-21f7aabd46d00a35e51d090d1592ccf735330898c61a1682d09f79dfc6c18da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Anti-Infective Agents - chemical synthesis</topic><topic>Anti-Infective Agents - pharmacology</topic><topic>Apoptosis</topic><topic>Applied sciences</topic><topic>Bacillus subtilis - drug effects</topic><topic>Bentonite - chemical synthesis</topic><topic>Bentonite - pharmacology</topic><topic>Biocompatible Materials - chemical synthesis</topic><topic>Calorimetry, Differential Scanning</topic><topic>Cell Adhesion - drug effects</topic><topic>Cell Line</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Flow Cytometry</topic><topic>Forms of application and semi-finished materials</topic><topic>L-Lactate Dehydrogenase - metabolism</topic><topic>Mice</topic><topic>Nanocomposites - chemistry</topic><topic>Polyesters - chemical synthesis</topic><topic>Polyesters - pharmacology</topic><topic>Polymer industry, paints, wood</topic><topic>Pseudomonas putida - drug effects</topic><topic>Silicates - chemistry</topic><topic>Technology of polymers</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corrales, T</creatorcontrib><creatorcontrib>Larraza, I</creatorcontrib><creatorcontrib>Catalina, F</creatorcontrib><creatorcontrib>Portolés, T</creatorcontrib><creatorcontrib>Ramírez-Santillán, C</creatorcontrib><creatorcontrib>Matesanz, M</creatorcontrib><creatorcontrib>Abrusci, C</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corrales, T</au><au>Larraza, I</au><au>Catalina, F</au><au>Portolés, T</au><au>Ramírez-Santillán, C</au><au>Matesanz, M</au><au>Abrusci, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro Biocompatibility and Antimicrobial Activity of Poly(ε-caprolactone)/Montmorillonite Nanocomposites</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2012-12-10</date><risdate>2012</risdate><volume>13</volume><issue>12</issue><spage>4247</spage><epage>4256</epage><pages>4247-4256</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>A triblock copolymer based on poly(ε-caprolactone) (PCL) and 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA)/2-(methyl-7-nitrobenzofurazan)amino ethyl acrylate (NBD-NAcri), was synthesized via atom transfer radical polymerization (ATRP). The corresponding chlorohydrated copolymer, named as PCL-b-DEAEMA, was prepared and anchored via cationic exchange on montmorillonite (MMT) surface. (PCL)/layered silicate nanocomposites were prepared through melt intercalation, and XRD and TEM analysis showed an exfoliated/intercalated morphology for organomodified clay. The surface characterization of the nanocomposites was undertaken by using contact angle and AFM. An increase in the contact angle was observed in the PCL/MMT(PCL‑b‑DEAEMA) nanocomposites with respect to PCL. The AFM analysis showed that the surface of the nanocomposites became rougher with respect to the PCL when MMTk10 or MMT(PCL‑b‑DEAEMA) was incorporated, and the value increased with the clay content. The antimicrobial activity of the nanocomposites against B. subtilis and P. putida was tested. It is remarkable that the biodegradation of PCL/MMT(PCL‑b‑DEAEMA) nanocomposites, monitored by the production of carbon dioxide and by chemiluminescence emission, was inhibited or retarded with respect to the PCL and PCL/1-MMTk10. It would indicate that nature of organomodifier in the clay play an important role in B. subtilis and P. putida adhesion processes. Biocompatibility studies demonstrate that both PCL and PCL/MMT materials allow the culture of murine L929 fibroblasts on its surface with high viability, very low apoptosis, and without plasma membrane damage, making these materials very adequate for tissue engineering.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23153018</pmid><doi>10.1021/bm301537g</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2012-12, Vol.13 (12), p.4247-4256
issn 1525-7797
1526-4602
language eng
recordid cdi_proquest_miscellaneous_1524405254
source MEDLINE; ACS Publications
subjects Animals
Anti-Infective Agents - chemical synthesis
Anti-Infective Agents - pharmacology
Apoptosis
Applied sciences
Bacillus subtilis - drug effects
Bentonite - chemical synthesis
Bentonite - pharmacology
Biocompatible Materials - chemical synthesis
Calorimetry, Differential Scanning
Cell Adhesion - drug effects
Cell Line
Cell Proliferation - drug effects
Cell Survival
Composites
Exact sciences and technology
Flow Cytometry
Forms of application and semi-finished materials
L-Lactate Dehydrogenase - metabolism
Mice
Nanocomposites - chemistry
Polyesters - chemical synthesis
Polyesters - pharmacology
Polymer industry, paints, wood
Pseudomonas putida - drug effects
Silicates - chemistry
Technology of polymers
X-Ray Diffraction
title In Vitro Biocompatibility and Antimicrobial Activity of Poly(ε-caprolactone)/Montmorillonite Nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vitro%20Biocompatibility%20and%20Antimicrobial%20Activity%20of%20Poly(%CE%B5-caprolactone)/Montmorillonite%20Nanocomposites&rft.jtitle=Biomacromolecules&rft.au=Corrales,%20T&rft.date=2012-12-10&rft.volume=13&rft.issue=12&rft.spage=4247&rft.epage=4256&rft.pages=4247-4256&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm301537g&rft_dat=%3Cproquest_cross%3E1237091989%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1237091989&rft_id=info:pmid/23153018&rfr_iscdi=true