A self‐consistent scattering model for cirrus. II: The high and low frequencies

The predictive quality of an ensemble model of cirrus ice crystals to model passive and active measurements of ice cloud, from the ultraviolet (UV) to the microwave, is tested. The ensemble model predicts m ∝ D2, where D is the maximum dimension of the ice crystal, and m is its mass. This predicted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of the Royal Meteorological Society 2014-04, Vol.140 (680), p.1039-1057
Hauptverfasser: Baran, Anthony J., Cotton, Richard, Furtado, Kalli, Havemann, Stephan, Labonnote, Laurent‐C., Marenco, Franco, Smith, Andrew, Thelen, Jean‐Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1057
container_issue 680
container_start_page 1039
container_title Quarterly journal of the Royal Meteorological Society
container_volume 140
creator Baran, Anthony J.
Cotton, Richard
Furtado, Kalli
Havemann, Stephan
Labonnote, Laurent‐C.
Marenco, Franco
Smith, Andrew
Thelen, Jean‐Claude
description The predictive quality of an ensemble model of cirrus ice crystals to model passive and active measurements of ice cloud, from the ultraviolet (UV) to the microwave, is tested. The ensemble model predicts m ∝ D2, where D is the maximum dimension of the ice crystal, and m is its mass. This predicted m‐D relationship is applied to a moment estimation parametrization of the particle size distribution (PSD), to estimate the PSD shape, given ice water content (IWC) and in‐cloud temperature. The same microphysics is applied across the electromagnetic spectrum to model UV, infrared, microwave and radar observations. The short‐wave measurements consist of airborne UV backscatter lidar (light detection and ranging) estimates of the volume extinction coefficient, total solar optical depth, and space‐based multi‐directional spherical albedo retrievals, at 0.865 µm, between the scattering angles 85° and 125°. The airborne long‐wave measurements consist of high‐resolution interferometer upwelling brightness temperatures, obtained between the wavelengths of about 3.45 µm and 4.1 µm, and 8.0 µm to 12.0 µm. The low‐frequency measurements consist of ground‐based Chilbolton 35 GHz radar reflectivity measurements and space‐based upwelling 190 GHz brightness temperature measurements. The predictive quality of the ensemble model is demonstrated to be generally within the experimental uncertainty of the lidar backscatter estimates of the volume extinction coefficient and total solar optical depth. The ensemble model prediction of the high‐resolution brightness temperature measurements is generally within ±2 K and ±1 K at solar and infrared wavelengths, respectively. The 35 GHz radar reflectivity and 190 GHz brightness temperatures are generally simulated to within ±2 dBZe, and ±2 K, respectively. The directional spherical albedo observations suggest that the scattering phase function of the most randomized ensemble model gives the best fit to the measurements (generally within ±3%). This article demonstrates that the ensemble model, assuming the same microphysics, is physically consistent across the electromagnetic spectrum.
doi_str_mv 10.1002/qj.2193
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524400469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524400469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4183-cc4c47f0a85dc12aea5d2acfa5117e3e1690923bd61ad67746b7dce8fb58a3393</originalsourceid><addsrcrecordid>eNp10MtKw0AUBuBBFKxVfIUBEQVJnVsyibtSvFQEKVRwF6aTM-2ENGlnEkp3PoLP6JOY2OJCcHU2H_8550fonJIBJYTdrvMBowk_QD0qpAxiSd4PUY8QHgYJIckxOvE-J4SEkskemgyxh8J8fXzqqvTW11DW2GtV1-BsOcfLKoMCm8phbZ1r_ACPx3d4ugC8sPMFVmWGi2qDjYN1A6W24E_RkVGFh7P97KO3h_vp6Cl4eX0cj4YvgRY05oHWQgtpiIrDTFOmQIUZU9qokFIJHGiUkITxWRZRlUVSimgmMw2xmYWx4jzhfXS9y125qt3t63RpvYaiUCVUjU9pyIQgREQdvfhD86pxZXtdq2gcxZwmnbraKe0q7x2YdOXsUrltSknaVZuu87SrtpWX-zzVVlUYp9rP_S9nsZAh46x1Nzu3sQVs_4tLJ88_qd8IT4Xk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518683199</pqid></control><display><type>article</type><title>A self‐consistent scattering model for cirrus. II: The high and low frequencies</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Baran, Anthony J. ; Cotton, Richard ; Furtado, Kalli ; Havemann, Stephan ; Labonnote, Laurent‐C. ; Marenco, Franco ; Smith, Andrew ; Thelen, Jean‐Claude</creator><creatorcontrib>Baran, Anthony J. ; Cotton, Richard ; Furtado, Kalli ; Havemann, Stephan ; Labonnote, Laurent‐C. ; Marenco, Franco ; Smith, Andrew ; Thelen, Jean‐Claude</creatorcontrib><description>The predictive quality of an ensemble model of cirrus ice crystals to model passive and active measurements of ice cloud, from the ultraviolet (UV) to the microwave, is tested. The ensemble model predicts m ∝ D2, where D is the maximum dimension of the ice crystal, and m is its mass. This predicted m‐D relationship is applied to a moment estimation parametrization of the particle size distribution (PSD), to estimate the PSD shape, given ice water content (IWC) and in‐cloud temperature. The same microphysics is applied across the electromagnetic spectrum to model UV, infrared, microwave and radar observations. The short‐wave measurements consist of airborne UV backscatter lidar (light detection and ranging) estimates of the volume extinction coefficient, total solar optical depth, and space‐based multi‐directional spherical albedo retrievals, at 0.865 µm, between the scattering angles 85° and 125°. The airborne long‐wave measurements consist of high‐resolution interferometer upwelling brightness temperatures, obtained between the wavelengths of about 3.45 µm and 4.1 µm, and 8.0 µm to 12.0 µm. The low‐frequency measurements consist of ground‐based Chilbolton 35 GHz radar reflectivity measurements and space‐based upwelling 190 GHz brightness temperature measurements. The predictive quality of the ensemble model is demonstrated to be generally within the experimental uncertainty of the lidar backscatter estimates of the volume extinction coefficient and total solar optical depth. The ensemble model prediction of the high‐resolution brightness temperature measurements is generally within ±2 K and ±1 K at solar and infrared wavelengths, respectively. The 35 GHz radar reflectivity and 190 GHz brightness temperatures are generally simulated to within ±2 dBZe, and ±2 K, respectively. The directional spherical albedo observations suggest that the scattering phase function of the most randomized ensemble model gives the best fit to the measurements (generally within ±3%). This article demonstrates that the ensemble model, assuming the same microphysics, is physically consistent across the electromagnetic spectrum.</description><identifier>ISSN: 0035-9009</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.2193</identifier><identifier>CODEN: QJRMAM</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>climate ; Earth, ocean, space ; electromagnetic spectrum ; ensemble model ; Exact sciences and technology ; External geophysics ; ice crystals ; Meteorology ; microwave ; Physics of the high neutral atmosphere ; radar ; remote sensing ; scattering</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2014-04, Vol.140 (680), p.1039-1057</ispartof><rights>2013 Royal Meteorological Society and Crown Copyright, the Met Office © 2013 Royal Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>2014 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4183-cc4c47f0a85dc12aea5d2acfa5117e3e1690923bd61ad67746b7dce8fb58a3393</citedby><cites>FETCH-LOGICAL-c4183-cc4c47f0a85dc12aea5d2acfa5117e3e1690923bd61ad67746b7dce8fb58a3393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqj.2193$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqj.2193$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28475232$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baran, Anthony J.</creatorcontrib><creatorcontrib>Cotton, Richard</creatorcontrib><creatorcontrib>Furtado, Kalli</creatorcontrib><creatorcontrib>Havemann, Stephan</creatorcontrib><creatorcontrib>Labonnote, Laurent‐C.</creatorcontrib><creatorcontrib>Marenco, Franco</creatorcontrib><creatorcontrib>Smith, Andrew</creatorcontrib><creatorcontrib>Thelen, Jean‐Claude</creatorcontrib><title>A self‐consistent scattering model for cirrus. II: The high and low frequencies</title><title>Quarterly journal of the Royal Meteorological Society</title><description>The predictive quality of an ensemble model of cirrus ice crystals to model passive and active measurements of ice cloud, from the ultraviolet (UV) to the microwave, is tested. The ensemble model predicts m ∝ D2, where D is the maximum dimension of the ice crystal, and m is its mass. This predicted m‐D relationship is applied to a moment estimation parametrization of the particle size distribution (PSD), to estimate the PSD shape, given ice water content (IWC) and in‐cloud temperature. The same microphysics is applied across the electromagnetic spectrum to model UV, infrared, microwave and radar observations. The short‐wave measurements consist of airborne UV backscatter lidar (light detection and ranging) estimates of the volume extinction coefficient, total solar optical depth, and space‐based multi‐directional spherical albedo retrievals, at 0.865 µm, between the scattering angles 85° and 125°. The airborne long‐wave measurements consist of high‐resolution interferometer upwelling brightness temperatures, obtained between the wavelengths of about 3.45 µm and 4.1 µm, and 8.0 µm to 12.0 µm. The low‐frequency measurements consist of ground‐based Chilbolton 35 GHz radar reflectivity measurements and space‐based upwelling 190 GHz brightness temperature measurements. The predictive quality of the ensemble model is demonstrated to be generally within the experimental uncertainty of the lidar backscatter estimates of the volume extinction coefficient and total solar optical depth. The ensemble model prediction of the high‐resolution brightness temperature measurements is generally within ±2 K and ±1 K at solar and infrared wavelengths, respectively. The 35 GHz radar reflectivity and 190 GHz brightness temperatures are generally simulated to within ±2 dBZe, and ±2 K, respectively. The directional spherical albedo observations suggest that the scattering phase function of the most randomized ensemble model gives the best fit to the measurements (generally within ±3%). This article demonstrates that the ensemble model, assuming the same microphysics, is physically consistent across the electromagnetic spectrum.</description><subject>climate</subject><subject>Earth, ocean, space</subject><subject>electromagnetic spectrum</subject><subject>ensemble model</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>ice crystals</subject><subject>Meteorology</subject><subject>microwave</subject><subject>Physics of the high neutral atmosphere</subject><subject>radar</subject><subject>remote sensing</subject><subject>scattering</subject><issn>0035-9009</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10MtKw0AUBuBBFKxVfIUBEQVJnVsyibtSvFQEKVRwF6aTM-2ENGlnEkp3PoLP6JOY2OJCcHU2H_8550fonJIBJYTdrvMBowk_QD0qpAxiSd4PUY8QHgYJIckxOvE-J4SEkskemgyxh8J8fXzqqvTW11DW2GtV1-BsOcfLKoMCm8phbZ1r_ACPx3d4ugC8sPMFVmWGi2qDjYN1A6W24E_RkVGFh7P97KO3h_vp6Cl4eX0cj4YvgRY05oHWQgtpiIrDTFOmQIUZU9qokFIJHGiUkITxWRZRlUVSimgmMw2xmYWx4jzhfXS9y125qt3t63RpvYaiUCVUjU9pyIQgREQdvfhD86pxZXtdq2gcxZwmnbraKe0q7x2YdOXsUrltSknaVZuu87SrtpWX-zzVVlUYp9rP_S9nsZAh46x1Nzu3sQVs_4tLJ88_qd8IT4Xk</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Baran, Anthony J.</creator><creator>Cotton, Richard</creator><creator>Furtado, Kalli</creator><creator>Havemann, Stephan</creator><creator>Labonnote, Laurent‐C.</creator><creator>Marenco, Franco</creator><creator>Smith, Andrew</creator><creator>Thelen, Jean‐Claude</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>201404</creationdate><title>A self‐consistent scattering model for cirrus. II: The high and low frequencies</title><author>Baran, Anthony J. ; Cotton, Richard ; Furtado, Kalli ; Havemann, Stephan ; Labonnote, Laurent‐C. ; Marenco, Franco ; Smith, Andrew ; Thelen, Jean‐Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4183-cc4c47f0a85dc12aea5d2acfa5117e3e1690923bd61ad67746b7dce8fb58a3393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>climate</topic><topic>Earth, ocean, space</topic><topic>electromagnetic spectrum</topic><topic>ensemble model</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>ice crystals</topic><topic>Meteorology</topic><topic>microwave</topic><topic>Physics of the high neutral atmosphere</topic><topic>radar</topic><topic>remote sensing</topic><topic>scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baran, Anthony J.</creatorcontrib><creatorcontrib>Cotton, Richard</creatorcontrib><creatorcontrib>Furtado, Kalli</creatorcontrib><creatorcontrib>Havemann, Stephan</creatorcontrib><creatorcontrib>Labonnote, Laurent‐C.</creatorcontrib><creatorcontrib>Marenco, Franco</creatorcontrib><creatorcontrib>Smith, Andrew</creatorcontrib><creatorcontrib>Thelen, Jean‐Claude</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baran, Anthony J.</au><au>Cotton, Richard</au><au>Furtado, Kalli</au><au>Havemann, Stephan</au><au>Labonnote, Laurent‐C.</au><au>Marenco, Franco</au><au>Smith, Andrew</au><au>Thelen, Jean‐Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self‐consistent scattering model for cirrus. II: The high and low frequencies</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2014-04</date><risdate>2014</risdate><volume>140</volume><issue>680</issue><spage>1039</spage><epage>1057</epage><pages>1039-1057</pages><issn>0035-9009</issn><eissn>1477-870X</eissn><coden>QJRMAM</coden><abstract>The predictive quality of an ensemble model of cirrus ice crystals to model passive and active measurements of ice cloud, from the ultraviolet (UV) to the microwave, is tested. The ensemble model predicts m ∝ D2, where D is the maximum dimension of the ice crystal, and m is its mass. This predicted m‐D relationship is applied to a moment estimation parametrization of the particle size distribution (PSD), to estimate the PSD shape, given ice water content (IWC) and in‐cloud temperature. The same microphysics is applied across the electromagnetic spectrum to model UV, infrared, microwave and radar observations. The short‐wave measurements consist of airborne UV backscatter lidar (light detection and ranging) estimates of the volume extinction coefficient, total solar optical depth, and space‐based multi‐directional spherical albedo retrievals, at 0.865 µm, between the scattering angles 85° and 125°. The airborne long‐wave measurements consist of high‐resolution interferometer upwelling brightness temperatures, obtained between the wavelengths of about 3.45 µm and 4.1 µm, and 8.0 µm to 12.0 µm. The low‐frequency measurements consist of ground‐based Chilbolton 35 GHz radar reflectivity measurements and space‐based upwelling 190 GHz brightness temperature measurements. The predictive quality of the ensemble model is demonstrated to be generally within the experimental uncertainty of the lidar backscatter estimates of the volume extinction coefficient and total solar optical depth. The ensemble model prediction of the high‐resolution brightness temperature measurements is generally within ±2 K and ±1 K at solar and infrared wavelengths, respectively. The 35 GHz radar reflectivity and 190 GHz brightness temperatures are generally simulated to within ±2 dBZe, and ±2 K, respectively. The directional spherical albedo observations suggest that the scattering phase function of the most randomized ensemble model gives the best fit to the measurements (generally within ±3%). This article demonstrates that the ensemble model, assuming the same microphysics, is physically consistent across the electromagnetic spectrum.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/qj.2193</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-9009
ispartof Quarterly journal of the Royal Meteorological Society, 2014-04, Vol.140 (680), p.1039-1057
issn 0035-9009
1477-870X
language eng
recordid cdi_proquest_miscellaneous_1524400469
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects climate
Earth, ocean, space
electromagnetic spectrum
ensemble model
Exact sciences and technology
External geophysics
ice crystals
Meteorology
microwave
Physics of the high neutral atmosphere
radar
remote sensing
scattering
title A self‐consistent scattering model for cirrus. II: The high and low frequencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self%E2%80%90consistent%20scattering%20model%20for%20cirrus.%20II:%20The%20high%20and%20low%20frequencies&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=Baran,%20Anthony%20J.&rft.date=2014-04&rft.volume=140&rft.issue=680&rft.spage=1039&rft.epage=1057&rft.pages=1039-1057&rft.issn=0035-9009&rft.eissn=1477-870X&rft.coden=QJRMAM&rft_id=info:doi/10.1002/qj.2193&rft_dat=%3Cproquest_cross%3E1524400469%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518683199&rft_id=info:pmid/&rfr_iscdi=true