Three dimensional proton exchange membrane fuel cell cathode model using a modified agglomerate approach based on discrete catalyst particles
The spherical agglomerate model represents the most detailed description of the PEM fuel cell catalyst layer as it accounts for both micro and macroscale transport phenomena. The usual approach with the classical spherical agglomerate model is to couple the homogenous mixture assumption for the aggl...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2014-03, Vol.250, p.110-119 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | |
container_start_page | 110 |
container_title | Journal of power sources |
container_volume | 250 |
creator | Cetinbas, Firat C. Advani, Suresh G. Prasad, Ajay K. |
description | The spherical agglomerate model represents the most detailed description of the PEM fuel cell catalyst layer as it accounts for both micro and macroscale transport phenomena. The usual approach with the classical spherical agglomerate model is to couple the homogenous mixture assumption for the agglomerate core to its idealized spherical geometry to obtain an analytical solution which is easily incorporated within a macroscale model. In this study, we incorporate numerical results from a modified agglomerate model based on discrete platinum particles [33] to create a more physically realistic 3D macroscale model for the PEM fuel cell cathode catalyst layer. Results from the 3D cathode model based on the modified particle approach are compared with the classical model and the macro-homogenous model. We find that, similar to the classical approach, the modified 3D model is able to reproduce previously reported trends for reactant, reaction rate, and overpotential distributions, whereas the macro-homogenous model fails to predict mass transport limitations properly. It is also shown that, unlike the classical approach, the modified 3D model is able to accurately predict the effect of Pt loading in the diffusion-loss region.
•New 3D model for PEMFC cathode developed with discrete catalyst particle approach.•Good results obtained for reactant, reaction rate, and overpotential distributions.•3D model accurately predicts effect of Pt loading in the diffusion-loss region. |
doi_str_mv | 10.1016/j.jpowsour.2013.10.138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524399190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313018065</els_id><sourcerecordid>1524399190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-59a7c7cae2c7ad79029212240cbd0d7cef478745d8dcc70a992af4a385d57ba93</originalsourceid><addsrcrecordid>eNqFUE1v1DAQtRBILIW_gHxB4pKtP-I6uYEqCkiVuJSzNTue7HrlxMFOgP4I_jPebumVy1ie9-bNvMfYWym2Usiry-P2OKdfJa15q4TU21Nfd8_YRnZWN8oa85xthLZdY63RL9mrUo5CCCmt2LA_d4dMxH0YaSohTRD5nNOSJk6_8QDTnvhI4y7DRHxYKXKkWAssh-QrVEvkawnTnsPpF4ZAnsN-H9NIGRbiMFc9wAPfQalQFfahYKYKVRWI92XhM-QlYKTymr0YIBZ68_hesO83n-6uvzS33z5_vf5422Ar1dKYHixaBFJowdteqF5JpVqBOy-8RRpa29nW-M4jWgF9r2BoQXfGG7uDXl-w92fdetuPlcrixnpUdVZtprU4aVSr-172olKvzlTMqZRMg5tzGCHfOyncKX93dP_yd6f8H_q6q4PvHndAQYhDjRBDeZpWnTKifeB9OPOoGv4ZKLuCgSYkHzLh4nwK_1v1F7PQo1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524399190</pqid></control><display><type>article</type><title>Three dimensional proton exchange membrane fuel cell cathode model using a modified agglomerate approach based on discrete catalyst particles</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cetinbas, Firat C. ; Advani, Suresh G. ; Prasad, Ajay K.</creator><creatorcontrib>Cetinbas, Firat C. ; Advani, Suresh G. ; Prasad, Ajay K.</creatorcontrib><description>The spherical agglomerate model represents the most detailed description of the PEM fuel cell catalyst layer as it accounts for both micro and macroscale transport phenomena. The usual approach with the classical spherical agglomerate model is to couple the homogenous mixture assumption for the agglomerate core to its idealized spherical geometry to obtain an analytical solution which is easily incorporated within a macroscale model. In this study, we incorporate numerical results from a modified agglomerate model based on discrete platinum particles [33] to create a more physically realistic 3D macroscale model for the PEM fuel cell cathode catalyst layer. Results from the 3D cathode model based on the modified particle approach are compared with the classical model and the macro-homogenous model. We find that, similar to the classical approach, the modified 3D model is able to reproduce previously reported trends for reactant, reaction rate, and overpotential distributions, whereas the macro-homogenous model fails to predict mass transport limitations properly. It is also shown that, unlike the classical approach, the modified 3D model is able to accurately predict the effect of Pt loading in the diffusion-loss region.
•New 3D model for PEMFC cathode developed with discrete catalyst particle approach.•Good results obtained for reactant, reaction rate, and overpotential distributions.•3D model accurately predicts effect of Pt loading in the diffusion-loss region.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.10.138</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Catalyst layer model ; Direct energy conversion and energy accumulation ; Discrete particle approach ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Materials ; Multiscale catalyst layer model ; Pt particle model ; Spherical agglomerate model</subject><ispartof>Journal of power sources, 2014-03, Vol.250, p.110-119</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-59a7c7cae2c7ad79029212240cbd0d7cef478745d8dcc70a992af4a385d57ba93</citedby><cites>FETCH-LOGICAL-c412t-59a7c7cae2c7ad79029212240cbd0d7cef478745d8dcc70a992af4a385d57ba93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2013.10.138$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28250438$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cetinbas, Firat C.</creatorcontrib><creatorcontrib>Advani, Suresh G.</creatorcontrib><creatorcontrib>Prasad, Ajay K.</creatorcontrib><title>Three dimensional proton exchange membrane fuel cell cathode model using a modified agglomerate approach based on discrete catalyst particles</title><title>Journal of power sources</title><description>The spherical agglomerate model represents the most detailed description of the PEM fuel cell catalyst layer as it accounts for both micro and macroscale transport phenomena. The usual approach with the classical spherical agglomerate model is to couple the homogenous mixture assumption for the agglomerate core to its idealized spherical geometry to obtain an analytical solution which is easily incorporated within a macroscale model. In this study, we incorporate numerical results from a modified agglomerate model based on discrete platinum particles [33] to create a more physically realistic 3D macroscale model for the PEM fuel cell cathode catalyst layer. Results from the 3D cathode model based on the modified particle approach are compared with the classical model and the macro-homogenous model. We find that, similar to the classical approach, the modified 3D model is able to reproduce previously reported trends for reactant, reaction rate, and overpotential distributions, whereas the macro-homogenous model fails to predict mass transport limitations properly. It is also shown that, unlike the classical approach, the modified 3D model is able to accurately predict the effect of Pt loading in the diffusion-loss region.
•New 3D model for PEMFC cathode developed with discrete catalyst particle approach.•Good results obtained for reactant, reaction rate, and overpotential distributions.•3D model accurately predicts effect of Pt loading in the diffusion-loss region.</description><subject>Applied sciences</subject><subject>Catalyst layer model</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Discrete particle approach</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Materials</subject><subject>Multiscale catalyst layer model</subject><subject>Pt particle model</subject><subject>Spherical agglomerate model</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUE1v1DAQtRBILIW_gHxB4pKtP-I6uYEqCkiVuJSzNTue7HrlxMFOgP4I_jPebumVy1ie9-bNvMfYWym2Usiry-P2OKdfJa15q4TU21Nfd8_YRnZWN8oa85xthLZdY63RL9mrUo5CCCmt2LA_d4dMxH0YaSohTRD5nNOSJk6_8QDTnvhI4y7DRHxYKXKkWAssh-QrVEvkawnTnsPpF4ZAnsN-H9NIGRbiMFc9wAPfQalQFfahYKYKVRWI92XhM-QlYKTymr0YIBZ68_hesO83n-6uvzS33z5_vf5422Ar1dKYHixaBFJowdteqF5JpVqBOy-8RRpa29nW-M4jWgF9r2BoQXfGG7uDXl-w92fdetuPlcrixnpUdVZtprU4aVSr-172olKvzlTMqZRMg5tzGCHfOyncKX93dP_yd6f8H_q6q4PvHndAQYhDjRBDeZpWnTKifeB9OPOoGv4ZKLuCgSYkHzLh4nwK_1v1F7PQo1k</recordid><startdate>20140315</startdate><enddate>20140315</enddate><creator>Cetinbas, Firat C.</creator><creator>Advani, Suresh G.</creator><creator>Prasad, Ajay K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20140315</creationdate><title>Three dimensional proton exchange membrane fuel cell cathode model using a modified agglomerate approach based on discrete catalyst particles</title><author>Cetinbas, Firat C. ; Advani, Suresh G. ; Prasad, Ajay K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-59a7c7cae2c7ad79029212240cbd0d7cef478745d8dcc70a992af4a385d57ba93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Catalyst layer model</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Discrete particle approach</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Materials</topic><topic>Multiscale catalyst layer model</topic><topic>Pt particle model</topic><topic>Spherical agglomerate model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cetinbas, Firat C.</creatorcontrib><creatorcontrib>Advani, Suresh G.</creatorcontrib><creatorcontrib>Prasad, Ajay K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cetinbas, Firat C.</au><au>Advani, Suresh G.</au><au>Prasad, Ajay K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three dimensional proton exchange membrane fuel cell cathode model using a modified agglomerate approach based on discrete catalyst particles</atitle><jtitle>Journal of power sources</jtitle><date>2014-03-15</date><risdate>2014</risdate><volume>250</volume><spage>110</spage><epage>119</epage><pages>110-119</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>The spherical agglomerate model represents the most detailed description of the PEM fuel cell catalyst layer as it accounts for both micro and macroscale transport phenomena. The usual approach with the classical spherical agglomerate model is to couple the homogenous mixture assumption for the agglomerate core to its idealized spherical geometry to obtain an analytical solution which is easily incorporated within a macroscale model. In this study, we incorporate numerical results from a modified agglomerate model based on discrete platinum particles [33] to create a more physically realistic 3D macroscale model for the PEM fuel cell cathode catalyst layer. Results from the 3D cathode model based on the modified particle approach are compared with the classical model and the macro-homogenous model. We find that, similar to the classical approach, the modified 3D model is able to reproduce previously reported trends for reactant, reaction rate, and overpotential distributions, whereas the macro-homogenous model fails to predict mass transport limitations properly. It is also shown that, unlike the classical approach, the modified 3D model is able to accurately predict the effect of Pt loading in the diffusion-loss region.
•New 3D model for PEMFC cathode developed with discrete catalyst particle approach.•Good results obtained for reactant, reaction rate, and overpotential distributions.•3D model accurately predicts effect of Pt loading in the diffusion-loss region.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.10.138</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2014-03, Vol.250, p.110-119 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1524399190 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Catalyst layer model Direct energy conversion and energy accumulation Discrete particle approach Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Materials Multiscale catalyst layer model Pt particle model Spherical agglomerate model |
title | Three dimensional proton exchange membrane fuel cell cathode model using a modified agglomerate approach based on discrete catalyst particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20dimensional%20proton%20exchange%20membrane%20fuel%20cell%20cathode%20model%20using%20a%20modified%20agglomerate%20approach%20based%20on%20discrete%20catalyst%20particles&rft.jtitle=Journal%20of%20power%20sources&rft.au=Cetinbas,%20Firat%20C.&rft.date=2014-03-15&rft.volume=250&rft.spage=110&rft.epage=119&rft.pages=110-119&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.10.138&rft_dat=%3Cproquest_cross%3E1524399190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524399190&rft_id=info:pmid/&rft_els_id=S0378775313018065&rfr_iscdi=true |