Single void dynamics in phase field modeling

Void growth is studied in the phase-field framework. The void-metal diffuse interface is customarily modeled by a Ginzburg-type gradient energy term with a parameterized coefficient – a constant independent of void size. Realistic vacancy supersaturations, as well as the real, rather than reduced, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2013-08, Vol.439 (1-3), p.25-32
Hauptverfasser: Xiao, Z.H., Semenov, A.A., Woo, C.H., Shi, S.Q.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Void growth is studied in the phase-field framework. The void-metal diffuse interface is customarily modeled by a Ginzburg-type gradient energy term with a parameterized coefficient – a constant independent of void size. Realistic vacancy supersaturations, as well as the real, rather than reduced, time are used in the simulations, so that direct comparison can be made between results of the phase-field model and the sharp boundary approach. It is found that the developed phase-field model reproduces reasonably well the dynamical behavior of an individual void, well-known from the rate-theory treatment of void evolution. The ultrafine characteristic spatial scales of the void-metal diffuse interface present a challenge to numerically efficient modeling of the evolution of a void ensemble under irradiation.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2013.03.076