Aharonov–Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap

Quantum tunnelling is a common fundamental quantum mechanical phenomenon that originates from the wave-like characteristics of quantum particles. Although the quantum tunnelling effect was first observed 85 years ago, some questions regarding the dynamics of quantum tunnelling remain unresolved. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-05, Vol.5 (1), p.3868-3868, Article 3868
Hauptverfasser: Noguchi, Atsushi, Shikano, Yutaka, Toyoda, Kenji, Urabe, Shinji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3868
container_issue 1
container_start_page 3868
container_title Nature communications
container_volume 5
creator Noguchi, Atsushi
Shikano, Yutaka
Toyoda, Kenji
Urabe, Shinji
description Quantum tunnelling is a common fundamental quantum mechanical phenomenon that originates from the wave-like characteristics of quantum particles. Although the quantum tunnelling effect was first observed 85 years ago, some questions regarding the dynamics of quantum tunnelling remain unresolved. Here we realize a quantum tunnelling system using two-dimensional ionic structures in a linear Paul trap. We demonstrate that the charged particles in this quantum tunnelling system are coupled to the vector potential of a magnetic field throughout the entire process, even during quantum tunnelling, as indicated by the manifestation of the Aharonov–Bohm effect in this system. The tunnelling rate of the structures periodically depends on the strength of the magnetic field, whose period is the same as the magnetic flux quantum φ 0 through the rotor [(0.99±0.07) × φ 0 ]. In the Aharonov–Bohm effect, coupling between an electromagnetic field potential and a charged particle’s wave function introduces a phase to the particle. By realizing a quantum tunnelling system of three ions in a linear Paul trap, Noguchi et al . demonstrate this effect via the particle tunnelling.
doi_str_mv 10.1038/ncomms4868
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524343026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524343026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-2af12c216711aa93869ccfac10b2a388d9ce57d1b9010e5efb5c78c2d4c13f83</originalsourceid><addsrcrecordid>eNpl0M1KAzEQB_AgipXaiw8gAS-irOZrd7PHWvyCggq9L9ls0m7pJm2SFbz5Dr6hT2JKqxbNZQLzY2b4A3CC0RVGlF8badvWM57xPXBEEMMJzgnd3_n3wMD7OYqPFpgzdgh6hHGCUIqPwMtwJpw19vXz_ePGzlqotFYywMbAMFMwdMaoxaIxU2g1FHDVCRO6FjobrFsjAWNTCQefRbeAwYnlMTjQYuHVYFv7YHJ3Oxk9JOOn-8fRcJxIyvOQEKExkQRnOcZCFJRnhZRaSIwqIijndSFVmte4KhBGKlW6SmXOJamZxFRz2gfnm7FLZ1ed8qFsGy_jrcIo2_kSp4RRRhHJIj37Q-e2cyYet1ZxM6E0j-pio6Sz3july6VrWuHeSozKddTlb9QRn25HdlWr6h_6HWwElxvgY8tMldvZ-X_cF-8biOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1523862337</pqid></control><display><type>article</type><title>Aharonov–Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap</title><source>Springer Nature OA Free Journals</source><creator>Noguchi, Atsushi ; Shikano, Yutaka ; Toyoda, Kenji ; Urabe, Shinji</creator><creatorcontrib>Noguchi, Atsushi ; Shikano, Yutaka ; Toyoda, Kenji ; Urabe, Shinji</creatorcontrib><description>Quantum tunnelling is a common fundamental quantum mechanical phenomenon that originates from the wave-like characteristics of quantum particles. Although the quantum tunnelling effect was first observed 85 years ago, some questions regarding the dynamics of quantum tunnelling remain unresolved. Here we realize a quantum tunnelling system using two-dimensional ionic structures in a linear Paul trap. We demonstrate that the charged particles in this quantum tunnelling system are coupled to the vector potential of a magnetic field throughout the entire process, even during quantum tunnelling, as indicated by the manifestation of the Aharonov–Bohm effect in this system. The tunnelling rate of the structures periodically depends on the strength of the magnetic field, whose period is the same as the magnetic flux quantum φ 0 through the rotor [(0.99±0.07) × φ 0 ]. In the Aharonov–Bohm effect, coupling between an electromagnetic field potential and a charged particle’s wave function introduces a phase to the particle. By realizing a quantum tunnelling system of three ions in a linear Paul trap, Noguchi et al . demonstrate this effect via the particle tunnelling.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms4868</identifier><identifier>PMID: 24820051</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/766/483/1139 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2014-05, Vol.5 (1), p.3868-3868, Article 3868</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group May 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-2af12c216711aa93869ccfac10b2a388d9ce57d1b9010e5efb5c78c2d4c13f83</citedby><cites>FETCH-LOGICAL-c387t-2af12c216711aa93869ccfac10b2a388d9ce57d1b9010e5efb5c78c2d4c13f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms4868$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms4868$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41120,42189,51576</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms4868$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24820051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Noguchi, Atsushi</creatorcontrib><creatorcontrib>Shikano, Yutaka</creatorcontrib><creatorcontrib>Toyoda, Kenji</creatorcontrib><creatorcontrib>Urabe, Shinji</creatorcontrib><title>Aharonov–Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Quantum tunnelling is a common fundamental quantum mechanical phenomenon that originates from the wave-like characteristics of quantum particles. Although the quantum tunnelling effect was first observed 85 years ago, some questions regarding the dynamics of quantum tunnelling remain unresolved. Here we realize a quantum tunnelling system using two-dimensional ionic structures in a linear Paul trap. We demonstrate that the charged particles in this quantum tunnelling system are coupled to the vector potential of a magnetic field throughout the entire process, even during quantum tunnelling, as indicated by the manifestation of the Aharonov–Bohm effect in this system. The tunnelling rate of the structures periodically depends on the strength of the magnetic field, whose period is the same as the magnetic flux quantum φ 0 through the rotor [(0.99±0.07) × φ 0 ]. In the Aharonov–Bohm effect, coupling between an electromagnetic field potential and a charged particle’s wave function introduces a phase to the particle. By realizing a quantum tunnelling system of three ions in a linear Paul trap, Noguchi et al . demonstrate this effect via the particle tunnelling.</description><subject>140/125</subject><subject>639/766/483/1139</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0M1KAzEQB_AgipXaiw8gAS-irOZrd7PHWvyCggq9L9ls0m7pJm2SFbz5Dr6hT2JKqxbNZQLzY2b4A3CC0RVGlF8badvWM57xPXBEEMMJzgnd3_n3wMD7OYqPFpgzdgh6hHGCUIqPwMtwJpw19vXz_ePGzlqotFYywMbAMFMwdMaoxaIxU2g1FHDVCRO6FjobrFsjAWNTCQefRbeAwYnlMTjQYuHVYFv7YHJ3Oxk9JOOn-8fRcJxIyvOQEKExkQRnOcZCFJRnhZRaSIwqIijndSFVmte4KhBGKlW6SmXOJamZxFRz2gfnm7FLZ1ed8qFsGy_jrcIo2_kSp4RRRhHJIj37Q-e2cyYet1ZxM6E0j-pio6Sz3july6VrWuHeSozKddTlb9QRn25HdlWr6h_6HWwElxvgY8tMldvZ-X_cF-8biOo</recordid><startdate>20140513</startdate><enddate>20140513</enddate><creator>Noguchi, Atsushi</creator><creator>Shikano, Yutaka</creator><creator>Toyoda, Kenji</creator><creator>Urabe, Shinji</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140513</creationdate><title>Aharonov–Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap</title><author>Noguchi, Atsushi ; Shikano, Yutaka ; Toyoda, Kenji ; Urabe, Shinji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-2af12c216711aa93869ccfac10b2a388d9ce57d1b9010e5efb5c78c2d4c13f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>140/125</topic><topic>639/766/483/1139</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noguchi, Atsushi</creatorcontrib><creatorcontrib>Shikano, Yutaka</creatorcontrib><creatorcontrib>Toyoda, Kenji</creatorcontrib><creatorcontrib>Urabe, Shinji</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Noguchi, Atsushi</au><au>Shikano, Yutaka</au><au>Toyoda, Kenji</au><au>Urabe, Shinji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aharonov–Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-05-13</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>3868</spage><epage>3868</epage><pages>3868-3868</pages><artnum>3868</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Quantum tunnelling is a common fundamental quantum mechanical phenomenon that originates from the wave-like characteristics of quantum particles. Although the quantum tunnelling effect was first observed 85 years ago, some questions regarding the dynamics of quantum tunnelling remain unresolved. Here we realize a quantum tunnelling system using two-dimensional ionic structures in a linear Paul trap. We demonstrate that the charged particles in this quantum tunnelling system are coupled to the vector potential of a magnetic field throughout the entire process, even during quantum tunnelling, as indicated by the manifestation of the Aharonov–Bohm effect in this system. The tunnelling rate of the structures periodically depends on the strength of the magnetic field, whose period is the same as the magnetic flux quantum φ 0 through the rotor [(0.99±0.07) × φ 0 ]. In the Aharonov–Bohm effect, coupling between an electromagnetic field potential and a charged particle’s wave function introduces a phase to the particle. By realizing a quantum tunnelling system of three ions in a linear Paul trap, Noguchi et al . demonstrate this effect via the particle tunnelling.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24820051</pmid><doi>10.1038/ncomms4868</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2014-05, Vol.5 (1), p.3868-3868, Article 3868
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_miscellaneous_1524343026
source Springer Nature OA Free Journals
subjects 140/125
639/766/483/1139
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Aharonov–Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A35%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aharonov%E2%80%93Bohm%20effect%20in%20the%20tunnelling%20of%20a%20quantum%20rotor%20in%20a%20linear%20Paul%20trap&rft.jtitle=Nature%20communications&rft.au=Noguchi,%20Atsushi&rft.date=2014-05-13&rft.volume=5&rft.issue=1&rft.spage=3868&rft.epage=3868&rft.pages=3868-3868&rft.artnum=3868&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms4868&rft_dat=%3Cproquest_C6C%3E1524343026%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1523862337&rft_id=info:pmid/24820051&rfr_iscdi=true