Bloch oscillations in plasmonic waveguide arrays
The combination of modern nanofabrication techniques and advanced computational tools has opened unprecedented opportunities to mold the flow of light. In particular, discrete photonic structures can be designed such that the resulting light dynamics mimics quantum mechanical condensed matter phenom...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-05, Vol.5 (1), p.3843-3843, Article 3843 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3843 |
---|---|
container_issue | 1 |
container_start_page | 3843 |
container_title | Nature communications |
container_volume | 5 |
creator | Block, A. Etrich, C. Limboeck, T. Bleckmann, F. Soergel, E. Rockstuhl, C. Linden, S. |
description | The combination of modern nanofabrication techniques and advanced computational tools has opened unprecedented opportunities to mold the flow of light. In particular, discrete photonic structures can be designed such that the resulting light dynamics mimics quantum mechanical condensed matter phenomena. By mapping the time-dependent probability distribution of an electronic wave packet to the spatial light intensity distribution in the corresponding photonic structure, the quantum mechanical evolution can be visualized directly in a coherent, yet classical wave environment. On the basis of this approach, several groups have recently observed discrete diffraction, Bloch oscillations and Zener tunnelling in different dielectric structures. Here we report the experimental observation of discrete diffraction and Bloch oscillations of surface plasmon polaritons in evanescently coupled plasmonic waveguide arrays. The effective external potential is tailored by introducing an appropriate transverse index gradient during nanofabrication of the arrays. Our experimental results are in excellent agreement with numerical calculations.
Bloch oscillations—oscillatory motions of wave packets in periodic potentials acting under constant forces—have been observed in semiconductor superlattices and photonic waveguide arrays. Here, the authors extend these ideas to plasmonics to observe Bloch oscillations and discrete diffraction. |
doi_str_mv | 10.1038/ncomms4843 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524172947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524172947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-d485be20a854a9fd2013992f626a0863bc2559cd86aca1cbeca056d7958e36ab3</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMottRe_AGy4EWU1XxvcrTFLyh40fOSzWZrym5Sk67Sf29KqxadywzMwzvvvACcIniNIBE3Tvuui1RQcgCGGFKUowKTw715AMYxLmAqIpGg9BgMMBWIMYmGAE5ar98yH7VtW7Wy3sXMumzZqth5Z3X2qT7MvLe1yVQIah1PwFGj2mjGuz4Cr_d3L9PHfPb88DS9neWaMrLKaypYZTBUglElmxpDRKTEDcdcQcFJpXEyoGvBlVZIV0YryHhdSCYM4aoiI3Cx1V0G_96buCo7G7VJJp3xfSwRwzR9J2mR0PM_6ML3wSV3G4pwVlCKEnW5pXTwMQbTlMtgOxXWJYLlJsryN8oEn-0k-6oz9Q_6HVwCrrZATCs3N2Hv5n-5L3v7fOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1523657441</pqid></control><display><type>article</type><title>Bloch oscillations in plasmonic waveguide arrays</title><source>Springer Nature OA/Free Journals</source><creator>Block, A. ; Etrich, C. ; Limboeck, T. ; Bleckmann, F. ; Soergel, E. ; Rockstuhl, C. ; Linden, S.</creator><creatorcontrib>Block, A. ; Etrich, C. ; Limboeck, T. ; Bleckmann, F. ; Soergel, E. ; Rockstuhl, C. ; Linden, S.</creatorcontrib><description>The combination of modern nanofabrication techniques and advanced computational tools has opened unprecedented opportunities to mold the flow of light. In particular, discrete photonic structures can be designed such that the resulting light dynamics mimics quantum mechanical condensed matter phenomena. By mapping the time-dependent probability distribution of an electronic wave packet to the spatial light intensity distribution in the corresponding photonic structure, the quantum mechanical evolution can be visualized directly in a coherent, yet classical wave environment. On the basis of this approach, several groups have recently observed discrete diffraction, Bloch oscillations and Zener tunnelling in different dielectric structures. Here we report the experimental observation of discrete diffraction and Bloch oscillations of surface plasmon polaritons in evanescently coupled plasmonic waveguide arrays. The effective external potential is tailored by introducing an appropriate transverse index gradient during nanofabrication of the arrays. Our experimental results are in excellent agreement with numerical calculations.
Bloch oscillations—oscillatory motions of wave packets in periodic potentials acting under constant forces—have been observed in semiconductor superlattices and photonic waveguide arrays. Here, the authors extend these ideas to plasmonics to observe Bloch oscillations and discrete diffraction.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms4843</identifier><identifier>PMID: 24815591</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>142/126 ; 639/766/119 ; 639/766/400/1021 ; 639/766/483 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2014-05, Vol.5 (1), p.3843-3843, Article 3843</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group May 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-d485be20a854a9fd2013992f626a0863bc2559cd86aca1cbeca056d7958e36ab3</citedby><cites>FETCH-LOGICAL-c453t-d485be20a854a9fd2013992f626a0863bc2559cd86aca1cbeca056d7958e36ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms4843$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms4843$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41099,42168,51554</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms4843$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24815591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Block, A.</creatorcontrib><creatorcontrib>Etrich, C.</creatorcontrib><creatorcontrib>Limboeck, T.</creatorcontrib><creatorcontrib>Bleckmann, F.</creatorcontrib><creatorcontrib>Soergel, E.</creatorcontrib><creatorcontrib>Rockstuhl, C.</creatorcontrib><creatorcontrib>Linden, S.</creatorcontrib><title>Bloch oscillations in plasmonic waveguide arrays</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The combination of modern nanofabrication techniques and advanced computational tools has opened unprecedented opportunities to mold the flow of light. In particular, discrete photonic structures can be designed such that the resulting light dynamics mimics quantum mechanical condensed matter phenomena. By mapping the time-dependent probability distribution of an electronic wave packet to the spatial light intensity distribution in the corresponding photonic structure, the quantum mechanical evolution can be visualized directly in a coherent, yet classical wave environment. On the basis of this approach, several groups have recently observed discrete diffraction, Bloch oscillations and Zener tunnelling in different dielectric structures. Here we report the experimental observation of discrete diffraction and Bloch oscillations of surface plasmon polaritons in evanescently coupled plasmonic waveguide arrays. The effective external potential is tailored by introducing an appropriate transverse index gradient during nanofabrication of the arrays. Our experimental results are in excellent agreement with numerical calculations.
Bloch oscillations—oscillatory motions of wave packets in periodic potentials acting under constant forces—have been observed in semiconductor superlattices and photonic waveguide arrays. Here, the authors extend these ideas to plasmonics to observe Bloch oscillations and discrete diffraction.</description><subject>142/126</subject><subject>639/766/119</subject><subject>639/766/400/1021</subject><subject>639/766/483</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkE1LAzEQhoMottRe_AGy4EWU1XxvcrTFLyh40fOSzWZrym5Sk67Sf29KqxadywzMwzvvvACcIniNIBE3Tvuui1RQcgCGGFKUowKTw715AMYxLmAqIpGg9BgMMBWIMYmGAE5ar98yH7VtW7Wy3sXMumzZqth5Z3X2qT7MvLe1yVQIah1PwFGj2mjGuz4Cr_d3L9PHfPb88DS9neWaMrLKaypYZTBUglElmxpDRKTEDcdcQcFJpXEyoGvBlVZIV0YryHhdSCYM4aoiI3Cx1V0G_96buCo7G7VJJp3xfSwRwzR9J2mR0PM_6ML3wSV3G4pwVlCKEnW5pXTwMQbTlMtgOxXWJYLlJsryN8oEn-0k-6oz9Q_6HVwCrrZATCs3N2Hv5n-5L3v7fOE</recordid><startdate>20140512</startdate><enddate>20140512</enddate><creator>Block, A.</creator><creator>Etrich, C.</creator><creator>Limboeck, T.</creator><creator>Bleckmann, F.</creator><creator>Soergel, E.</creator><creator>Rockstuhl, C.</creator><creator>Linden, S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140512</creationdate><title>Bloch oscillations in plasmonic waveguide arrays</title><author>Block, A. ; Etrich, C. ; Limboeck, T. ; Bleckmann, F. ; Soergel, E. ; Rockstuhl, C. ; Linden, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-d485be20a854a9fd2013992f626a0863bc2559cd86aca1cbeca056d7958e36ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>142/126</topic><topic>639/766/119</topic><topic>639/766/400/1021</topic><topic>639/766/483</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Block, A.</creatorcontrib><creatorcontrib>Etrich, C.</creatorcontrib><creatorcontrib>Limboeck, T.</creatorcontrib><creatorcontrib>Bleckmann, F.</creatorcontrib><creatorcontrib>Soergel, E.</creatorcontrib><creatorcontrib>Rockstuhl, C.</creatorcontrib><creatorcontrib>Linden, S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Block, A.</au><au>Etrich, C.</au><au>Limboeck, T.</au><au>Bleckmann, F.</au><au>Soergel, E.</au><au>Rockstuhl, C.</au><au>Linden, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bloch oscillations in plasmonic waveguide arrays</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-05-12</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>3843</spage><epage>3843</epage><pages>3843-3843</pages><artnum>3843</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The combination of modern nanofabrication techniques and advanced computational tools has opened unprecedented opportunities to mold the flow of light. In particular, discrete photonic structures can be designed such that the resulting light dynamics mimics quantum mechanical condensed matter phenomena. By mapping the time-dependent probability distribution of an electronic wave packet to the spatial light intensity distribution in the corresponding photonic structure, the quantum mechanical evolution can be visualized directly in a coherent, yet classical wave environment. On the basis of this approach, several groups have recently observed discrete diffraction, Bloch oscillations and Zener tunnelling in different dielectric structures. Here we report the experimental observation of discrete diffraction and Bloch oscillations of surface plasmon polaritons in evanescently coupled plasmonic waveguide arrays. The effective external potential is tailored by introducing an appropriate transverse index gradient during nanofabrication of the arrays. Our experimental results are in excellent agreement with numerical calculations.
Bloch oscillations—oscillatory motions of wave packets in periodic potentials acting under constant forces—have been observed in semiconductor superlattices and photonic waveguide arrays. Here, the authors extend these ideas to plasmonics to observe Bloch oscillations and discrete diffraction.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24815591</pmid><doi>10.1038/ncomms4843</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-05, Vol.5 (1), p.3843-3843, Article 3843 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1524172947 |
source | Springer Nature OA/Free Journals |
subjects | 142/126 639/766/119 639/766/400/1021 639/766/483 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Bloch oscillations in plasmonic waveguide arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bloch%20oscillations%20in%20plasmonic%20waveguide%20arrays&rft.jtitle=Nature%20communications&rft.au=Block,%20A.&rft.date=2014-05-12&rft.volume=5&rft.issue=1&rft.spage=3843&rft.epage=3843&rft.pages=3843-3843&rft.artnum=3843&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms4843&rft_dat=%3Cproquest_C6C%3E1524172947%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1523657441&rft_id=info:pmid/24815591&rfr_iscdi=true |