1H relaxation enhancement induced by nanoparticles in solutions: influence of magnetic properties and diffusion

Magnetic nanoparticles that induce nuclear relaxation are the most promising materials to enhance the sensitivity in Magnetic Resonance Imaging. In order to provide a comprehensive understanding of the magnetic field dependence of the relaxation enhancement in solutions, Nuclear Magnetic Resonance (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2014-05, Vol.140 (17), p.174504-174504
Hauptverfasser: Kruk, D, Korpała, A, Taheri, S Mehdizadeh, Kozłowski, A, Förster, S, Rössler, E A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174504
container_issue 17
container_start_page 174504
container_title The Journal of chemical physics
container_volume 140
creator Kruk, D
Korpała, A
Taheri, S Mehdizadeh
Kozłowski, A
Förster, S
Rössler, E A
description Magnetic nanoparticles that induce nuclear relaxation are the most promising materials to enhance the sensitivity in Magnetic Resonance Imaging. In order to provide a comprehensive understanding of the magnetic field dependence of the relaxation enhancement in solutions, Nuclear Magnetic Resonance (1)H spin-lattice relaxation for decalin and toluene solutions of various Fe2O3 nanoparticles was investigated. The relaxation experiments were performed in a frequency range of 10 kHz-20 MHz by applying Field Cycling method, and in the temperature range of 257-298 K, using nanoparticles differing in size and shape: spherical--5 nm diameter, cubic--6.5 nm diameter, and cubic--9 nm diameter. The relaxation dispersion data were interpreted in terms of a theory of nuclear relaxation induced by magnetic crystals in solution. The approach was tested with respect to its applicability depending on the magnetic characteristics of the nanocrystals and the time-scale of translational diffusion of the solvent. The role of Curie relaxation and the contributions to the overall (1)H spin-lattice relaxation associated with the electronic spin-lattice and spin-spin relaxation was thoroughly discussed. It was demonstrated that the approach leads to consistent results providing information on the magnetic (electronic) properties of the nanocrystals, i.e., effective electron spin and relaxation times. In addition, features of the (1)H spin-lattice relaxation resulting from the electronic properties of the crystals and the solvent diffusion were explained.
doi_str_mv 10.1063/1.4871461
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1523407031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127666577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1583-f80ae6d6772b1963a3b3cd34fb994e8584affc15ca86ebc31a00322c2fbddd0a3</originalsourceid><addsrcrecordid>eNpd0cFqGzEQBmBRUmrH7SEvEAS5tIdNZyRZ2s0thLYuBHppz4tWGiUbdiVn5YX67SNjJ4ecBjHfPwwaxi4QrhG0_I7XqjaoNH5gS4S6qYxu4IwtAQRWjQa9YOc5PwEAGqE-sYVQNaJWcskSbvhEg_1vd32KnOKjjY5GijveRz878rzb82hj2tpp17uBcmnwnIb5EMg35RWGmUqIp8BH-xCpML6d0pZKoHAbPfd9CHMugc_sY7BDpi-numL_fv74e7ep7v_8-n13e185XNeyCjVY0l4bIzpstLSyk85LFbqmUVSva2VDKNTZWlPnJFoAKYQTofPeg5Ur9vU4tyzyPFPetWOfHQ2DjZTm3OJaSAUGJBZ69Y4-pXmKZbtWoDBa67UxRX07KjelnCcK7XbqRzvtW4T2cIUW29MVir08TZy7kfybfP12-QKrr4Ku</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127666577</pqid></control><display><type>article</type><title>1H relaxation enhancement induced by nanoparticles in solutions: influence of magnetic properties and diffusion</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kruk, D ; Korpała, A ; Taheri, S Mehdizadeh ; Kozłowski, A ; Förster, S ; Rössler, E A</creator><creatorcontrib>Kruk, D ; Korpała, A ; Taheri, S Mehdizadeh ; Kozłowski, A ; Förster, S ; Rössler, E A</creatorcontrib><description>Magnetic nanoparticles that induce nuclear relaxation are the most promising materials to enhance the sensitivity in Magnetic Resonance Imaging. In order to provide a comprehensive understanding of the magnetic field dependence of the relaxation enhancement in solutions, Nuclear Magnetic Resonance (1)H spin-lattice relaxation for decalin and toluene solutions of various Fe2O3 nanoparticles was investigated. The relaxation experiments were performed in a frequency range of 10 kHz-20 MHz by applying Field Cycling method, and in the temperature range of 257-298 K, using nanoparticles differing in size and shape: spherical--5 nm diameter, cubic--6.5 nm diameter, and cubic--9 nm diameter. The relaxation dispersion data were interpreted in terms of a theory of nuclear relaxation induced by magnetic crystals in solution. The approach was tested with respect to its applicability depending on the magnetic characteristics of the nanocrystals and the time-scale of translational diffusion of the solvent. The role of Curie relaxation and the contributions to the overall (1)H spin-lattice relaxation associated with the electronic spin-lattice and spin-spin relaxation was thoroughly discussed. It was demonstrated that the approach leads to consistent results providing information on the magnetic (electronic) properties of the nanocrystals, i.e., effective electron spin and relaxation times. In addition, features of the (1)H spin-lattice relaxation resulting from the electronic properties of the crystals and the solvent diffusion were explained.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4871461</identifier><identifier>PMID: 24811643</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Crystal lattices ; Decalin ; Dependence ; Diffusion ; Electron spin ; Ferric Compounds - chemistry ; Magnetic induction ; Magnetic properties ; Magnetic resonance imaging ; Magnetite Nanoparticles - chemistry ; Nanocrystals ; Nanoparticles ; NMR ; Nuclear magnetic resonance ; Nuclear relaxation ; Physical Phenomena ; Physics ; Protons ; Sensitivity enhancement ; Solutions - chemistry ; Solvents ; Solvents - chemistry ; Spin-lattice relaxation ; Toluene</subject><ispartof>The Journal of chemical physics, 2014-05, Vol.140 (17), p.174504-174504</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1583-f80ae6d6772b1963a3b3cd34fb994e8584affc15ca86ebc31a00322c2fbddd0a3</citedby><cites>FETCH-LOGICAL-c1583-f80ae6d6772b1963a3b3cd34fb994e8584affc15ca86ebc31a00322c2fbddd0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24811643$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kruk, D</creatorcontrib><creatorcontrib>Korpała, A</creatorcontrib><creatorcontrib>Taheri, S Mehdizadeh</creatorcontrib><creatorcontrib>Kozłowski, A</creatorcontrib><creatorcontrib>Förster, S</creatorcontrib><creatorcontrib>Rössler, E A</creatorcontrib><title>1H relaxation enhancement induced by nanoparticles in solutions: influence of magnetic properties and diffusion</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Magnetic nanoparticles that induce nuclear relaxation are the most promising materials to enhance the sensitivity in Magnetic Resonance Imaging. In order to provide a comprehensive understanding of the magnetic field dependence of the relaxation enhancement in solutions, Nuclear Magnetic Resonance (1)H spin-lattice relaxation for decalin and toluene solutions of various Fe2O3 nanoparticles was investigated. The relaxation experiments were performed in a frequency range of 10 kHz-20 MHz by applying Field Cycling method, and in the temperature range of 257-298 K, using nanoparticles differing in size and shape: spherical--5 nm diameter, cubic--6.5 nm diameter, and cubic--9 nm diameter. The relaxation dispersion data were interpreted in terms of a theory of nuclear relaxation induced by magnetic crystals in solution. The approach was tested with respect to its applicability depending on the magnetic characteristics of the nanocrystals and the time-scale of translational diffusion of the solvent. The role of Curie relaxation and the contributions to the overall (1)H spin-lattice relaxation associated with the electronic spin-lattice and spin-spin relaxation was thoroughly discussed. It was demonstrated that the approach leads to consistent results providing information on the magnetic (electronic) properties of the nanocrystals, i.e., effective electron spin and relaxation times. In addition, features of the (1)H spin-lattice relaxation resulting from the electronic properties of the crystals and the solvent diffusion were explained.</description><subject>Crystal lattices</subject><subject>Decalin</subject><subject>Dependence</subject><subject>Diffusion</subject><subject>Electron spin</subject><subject>Ferric Compounds - chemistry</subject><subject>Magnetic induction</subject><subject>Magnetic properties</subject><subject>Magnetic resonance imaging</subject><subject>Magnetite Nanoparticles - chemistry</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear relaxation</subject><subject>Physical Phenomena</subject><subject>Physics</subject><subject>Protons</subject><subject>Sensitivity enhancement</subject><subject>Solutions - chemistry</subject><subject>Solvents</subject><subject>Solvents - chemistry</subject><subject>Spin-lattice relaxation</subject><subject>Toluene</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0cFqGzEQBmBRUmrH7SEvEAS5tIdNZyRZ2s0thLYuBHppz4tWGiUbdiVn5YX67SNjJ4ecBjHfPwwaxi4QrhG0_I7XqjaoNH5gS4S6qYxu4IwtAQRWjQa9YOc5PwEAGqE-sYVQNaJWcskSbvhEg_1vd32KnOKjjY5GijveRz878rzb82hj2tpp17uBcmnwnIb5EMg35RWGmUqIp8BH-xCpML6d0pZKoHAbPfd9CHMugc_sY7BDpi-numL_fv74e7ep7v_8-n13e185XNeyCjVY0l4bIzpstLSyk85LFbqmUVSva2VDKNTZWlPnJFoAKYQTofPeg5Ur9vU4tyzyPFPetWOfHQ2DjZTm3OJaSAUGJBZ69Y4-pXmKZbtWoDBa67UxRX07KjelnCcK7XbqRzvtW4T2cIUW29MVir08TZy7kfybfP12-QKrr4Ku</recordid><startdate>20140507</startdate><enddate>20140507</enddate><creator>Kruk, D</creator><creator>Korpała, A</creator><creator>Taheri, S Mehdizadeh</creator><creator>Kozłowski, A</creator><creator>Förster, S</creator><creator>Rössler, E A</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20140507</creationdate><title>1H relaxation enhancement induced by nanoparticles in solutions: influence of magnetic properties and diffusion</title><author>Kruk, D ; Korpała, A ; Taheri, S Mehdizadeh ; Kozłowski, A ; Förster, S ; Rössler, E A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1583-f80ae6d6772b1963a3b3cd34fb994e8584affc15ca86ebc31a00322c2fbddd0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Crystal lattices</topic><topic>Decalin</topic><topic>Dependence</topic><topic>Diffusion</topic><topic>Electron spin</topic><topic>Ferric Compounds - chemistry</topic><topic>Magnetic induction</topic><topic>Magnetic properties</topic><topic>Magnetic resonance imaging</topic><topic>Magnetite Nanoparticles - chemistry</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear relaxation</topic><topic>Physical Phenomena</topic><topic>Physics</topic><topic>Protons</topic><topic>Sensitivity enhancement</topic><topic>Solutions - chemistry</topic><topic>Solvents</topic><topic>Solvents - chemistry</topic><topic>Spin-lattice relaxation</topic><topic>Toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruk, D</creatorcontrib><creatorcontrib>Korpała, A</creatorcontrib><creatorcontrib>Taheri, S Mehdizadeh</creatorcontrib><creatorcontrib>Kozłowski, A</creatorcontrib><creatorcontrib>Förster, S</creatorcontrib><creatorcontrib>Rössler, E A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruk, D</au><au>Korpała, A</au><au>Taheri, S Mehdizadeh</au><au>Kozłowski, A</au><au>Förster, S</au><au>Rössler, E A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1H relaxation enhancement induced by nanoparticles in solutions: influence of magnetic properties and diffusion</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-05-07</date><risdate>2014</risdate><volume>140</volume><issue>17</issue><spage>174504</spage><epage>174504</epage><pages>174504-174504</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>Magnetic nanoparticles that induce nuclear relaxation are the most promising materials to enhance the sensitivity in Magnetic Resonance Imaging. In order to provide a comprehensive understanding of the magnetic field dependence of the relaxation enhancement in solutions, Nuclear Magnetic Resonance (1)H spin-lattice relaxation for decalin and toluene solutions of various Fe2O3 nanoparticles was investigated. The relaxation experiments were performed in a frequency range of 10 kHz-20 MHz by applying Field Cycling method, and in the temperature range of 257-298 K, using nanoparticles differing in size and shape: spherical--5 nm diameter, cubic--6.5 nm diameter, and cubic--9 nm diameter. The relaxation dispersion data were interpreted in terms of a theory of nuclear relaxation induced by magnetic crystals in solution. The approach was tested with respect to its applicability depending on the magnetic characteristics of the nanocrystals and the time-scale of translational diffusion of the solvent. The role of Curie relaxation and the contributions to the overall (1)H spin-lattice relaxation associated with the electronic spin-lattice and spin-spin relaxation was thoroughly discussed. It was demonstrated that the approach leads to consistent results providing information on the magnetic (electronic) properties of the nanocrystals, i.e., effective electron spin and relaxation times. In addition, features of the (1)H spin-lattice relaxation resulting from the electronic properties of the crystals and the solvent diffusion were explained.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24811643</pmid><doi>10.1063/1.4871461</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2014-05, Vol.140 (17), p.174504-174504
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_1523407031
source MEDLINE; AIP Journals Complete; Alma/SFX Local Collection
subjects Crystal lattices
Decalin
Dependence
Diffusion
Electron spin
Ferric Compounds - chemistry
Magnetic induction
Magnetic properties
Magnetic resonance imaging
Magnetite Nanoparticles - chemistry
Nanocrystals
Nanoparticles
NMR
Nuclear magnetic resonance
Nuclear relaxation
Physical Phenomena
Physics
Protons
Sensitivity enhancement
Solutions - chemistry
Solvents
Solvents - chemistry
Spin-lattice relaxation
Toluene
title 1H relaxation enhancement induced by nanoparticles in solutions: influence of magnetic properties and diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1H%20relaxation%20enhancement%20induced%20by%20nanoparticles%20in%20solutions:%20influence%20of%20magnetic%20properties%20and%20diffusion&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Kruk,%20D&rft.date=2014-05-07&rft.volume=140&rft.issue=17&rft.spage=174504&rft.epage=174504&rft.pages=174504-174504&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4871461&rft_dat=%3Cproquest_cross%3E2127666577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127666577&rft_id=info:pmid/24811643&rfr_iscdi=true