Active Learning With Drifting Streaming Data

In learning to classify streaming data, obtaining true labels may require major effort and may incur excessive cost. Active learning focuses on carefully selecting as few labeled instances as possible for learning an accurate predictive model. Streaming data poses additional challenges for active le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2014-01, Vol.25 (1), p.27-39
Hauptverfasser: Zliobaite, Indre, Bifet, Albert, Pfahringer, Bernhard, Holmes, Geoffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 1
container_start_page 27
container_title IEEE transaction on neural networks and learning systems
container_volume 25
creator Zliobaite, Indre
Bifet, Albert
Pfahringer, Bernhard
Holmes, Geoffrey
description In learning to classify streaming data, obtaining true labels may require major effort and may incur excessive cost. Active learning focuses on carefully selecting as few labeled instances as possible for learning an accurate predictive model. Streaming data poses additional challenges for active learning, since the data distribution may change over time (concept drift) and models need to adapt. Conventional active learning strategies concentrate on querying the most uncertain instances, which are typically concentrated around the decision boundary. Changes occurring further from the boundary may be missed, and models may fail to adapt. This paper presents a theoretically supported framework for active learning from drifting data streams and develops three active learning strategies for streaming data that explicitly handle concept drift. They are based on uncertainty, dynamic allocation of labeling efforts over time, and randomization of the search space. We empirically demonstrate that these strategies react well to changes that can occur anywhere in the instance space and unexpectedly.
doi_str_mv 10.1109/TNNLS.2012.2236570
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1523404949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6414645</ieee_id><sourcerecordid>1523404949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-3deb0a0f8c2988c0520574b989038c16de304b0b7f0c1b8c9574292eed4943393</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0Eoqj0D4CEKrEwkHL-iGOPVcuXVJWhRbBZjuNAqiYpdoLEv8ehpQMTXnzWPfee_CB0hmGEMcib5Xw-W4wIYDIihPI4gQN0QjAnEaFCHO7r5LWHBt6vIBwOMWfyGPUIE8A5Iyfoemya4tMOZ1a7qqjehi9F8z6cuiJvuteicVaXXTXVjT5FR7leezvY3X30fHe7nDxEs6f7x8l4FhkqWBPRzKagIReGSCEMxATihKVSSKDCYJ5ZCiyFNMnB4FQYGbpEEmszJhmlkvbR1TZ34-qP1vpGlYU3dr3Wla1br3BMKIMA_wPtIkFQmgT08g-6qltXhY8EigvBOCQ4UGRLGVd772yuNq4otftSGFRnXv2YV515tTMfhi520W1a2mw_8us5AOdboLDW7tuchcUspt8rjYM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1468846071</pqid></control><display><type>article</type><title>Active Learning With Drifting Streaming Data</title><source>IEEE Electronic Library (IEL)</source><creator>Zliobaite, Indre ; Bifet, Albert ; Pfahringer, Bernhard ; Holmes, Geoffrey</creator><creatorcontrib>Zliobaite, Indre ; Bifet, Albert ; Pfahringer, Bernhard ; Holmes, Geoffrey</creatorcontrib><description>In learning to classify streaming data, obtaining true labels may require major effort and may incur excessive cost. Active learning focuses on carefully selecting as few labeled instances as possible for learning an accurate predictive model. Streaming data poses additional challenges for active learning, since the data distribution may change over time (concept drift) and models need to adapt. Conventional active learning strategies concentrate on querying the most uncertain instances, which are typically concentrated around the decision boundary. Changes occurring further from the boundary may be missed, and models may fail to adapt. This paper presents a theoretically supported framework for active learning from drifting data streams and develops three active learning strategies for streaming data that explicitly handle concept drift. They are based on uncertainty, dynamic allocation of labeling efforts over time, and randomization of the search space. We empirically demonstrate that these strategies react well to changes that can occur anywhere in the instance space and unexpectedly.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2012.2236570</identifier><identifier>PMID: 24806642</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active learning ; Adaptation models ; Boundaries ; College students ; concept drift ; data streams ; Labeling ; Laboratories ; Learning systems ; Predictive models ; Production ; Teaching methods ; Uncertainty ; user feedback</subject><ispartof>IEEE transaction on neural networks and learning systems, 2014-01, Vol.25 (1), p.27-39</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-3deb0a0f8c2988c0520574b989038c16de304b0b7f0c1b8c9574292eed4943393</citedby><cites>FETCH-LOGICAL-c384t-3deb0a0f8c2988c0520574b989038c16de304b0b7f0c1b8c9574292eed4943393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6414645$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6414645$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24806642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zliobaite, Indre</creatorcontrib><creatorcontrib>Bifet, Albert</creatorcontrib><creatorcontrib>Pfahringer, Bernhard</creatorcontrib><creatorcontrib>Holmes, Geoffrey</creatorcontrib><title>Active Learning With Drifting Streaming Data</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In learning to classify streaming data, obtaining true labels may require major effort and may incur excessive cost. Active learning focuses on carefully selecting as few labeled instances as possible for learning an accurate predictive model. Streaming data poses additional challenges for active learning, since the data distribution may change over time (concept drift) and models need to adapt. Conventional active learning strategies concentrate on querying the most uncertain instances, which are typically concentrated around the decision boundary. Changes occurring further from the boundary may be missed, and models may fail to adapt. This paper presents a theoretically supported framework for active learning from drifting data streams and develops three active learning strategies for streaming data that explicitly handle concept drift. They are based on uncertainty, dynamic allocation of labeling efforts over time, and randomization of the search space. We empirically demonstrate that these strategies react well to changes that can occur anywhere in the instance space and unexpectedly.</description><subject>Active learning</subject><subject>Adaptation models</subject><subject>Boundaries</subject><subject>College students</subject><subject>concept drift</subject><subject>data streams</subject><subject>Labeling</subject><subject>Laboratories</subject><subject>Learning systems</subject><subject>Predictive models</subject><subject>Production</subject><subject>Teaching methods</subject><subject>Uncertainty</subject><subject>user feedback</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkD1PwzAQhi0Eoqj0D4CEKrEwkHL-iGOPVcuXVJWhRbBZjuNAqiYpdoLEv8ehpQMTXnzWPfee_CB0hmGEMcib5Xw-W4wIYDIihPI4gQN0QjAnEaFCHO7r5LWHBt6vIBwOMWfyGPUIE8A5Iyfoemya4tMOZ1a7qqjehi9F8z6cuiJvuteicVaXXTXVjT5FR7leezvY3X30fHe7nDxEs6f7x8l4FhkqWBPRzKagIReGSCEMxATihKVSSKDCYJ5ZCiyFNMnB4FQYGbpEEmszJhmlkvbR1TZ34-qP1vpGlYU3dr3Wla1br3BMKIMA_wPtIkFQmgT08g-6qltXhY8EigvBOCQ4UGRLGVd772yuNq4otftSGFRnXv2YV515tTMfhi520W1a2mw_8us5AOdboLDW7tuchcUspt8rjYM8</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Zliobaite, Indre</creator><creator>Bifet, Albert</creator><creator>Pfahringer, Bernhard</creator><creator>Holmes, Geoffrey</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201401</creationdate><title>Active Learning With Drifting Streaming Data</title><author>Zliobaite, Indre ; Bifet, Albert ; Pfahringer, Bernhard ; Holmes, Geoffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-3deb0a0f8c2988c0520574b989038c16de304b0b7f0c1b8c9574292eed4943393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Active learning</topic><topic>Adaptation models</topic><topic>Boundaries</topic><topic>College students</topic><topic>concept drift</topic><topic>data streams</topic><topic>Labeling</topic><topic>Laboratories</topic><topic>Learning systems</topic><topic>Predictive models</topic><topic>Production</topic><topic>Teaching methods</topic><topic>Uncertainty</topic><topic>user feedback</topic><toplevel>online_resources</toplevel><creatorcontrib>Zliobaite, Indre</creatorcontrib><creatorcontrib>Bifet, Albert</creatorcontrib><creatorcontrib>Pfahringer, Bernhard</creatorcontrib><creatorcontrib>Holmes, Geoffrey</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zliobaite, Indre</au><au>Bifet, Albert</au><au>Pfahringer, Bernhard</au><au>Holmes, Geoffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Learning With Drifting Streaming Data</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2014-01</date><risdate>2014</risdate><volume>25</volume><issue>1</issue><spage>27</spage><epage>39</epage><pages>27-39</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In learning to classify streaming data, obtaining true labels may require major effort and may incur excessive cost. Active learning focuses on carefully selecting as few labeled instances as possible for learning an accurate predictive model. Streaming data poses additional challenges for active learning, since the data distribution may change over time (concept drift) and models need to adapt. Conventional active learning strategies concentrate on querying the most uncertain instances, which are typically concentrated around the decision boundary. Changes occurring further from the boundary may be missed, and models may fail to adapt. This paper presents a theoretically supported framework for active learning from drifting data streams and develops three active learning strategies for streaming data that explicitly handle concept drift. They are based on uncertainty, dynamic allocation of labeling efforts over time, and randomization of the search space. We empirically demonstrate that these strategies react well to changes that can occur anywhere in the instance space and unexpectedly.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24806642</pmid><doi>10.1109/TNNLS.2012.2236570</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2014-01, Vol.25 (1), p.27-39
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_1523404949
source IEEE Electronic Library (IEL)
subjects Active learning
Adaptation models
Boundaries
College students
concept drift
data streams
Labeling
Laboratories
Learning systems
Predictive models
Production
Teaching methods
Uncertainty
user feedback
title Active Learning With Drifting Streaming Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Learning%20With%20Drifting%20Streaming%20Data&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zliobaite,%20Indre&rft.date=2014-01&rft.volume=25&rft.issue=1&rft.spage=27&rft.epage=39&rft.pages=27-39&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2012.2236570&rft_dat=%3Cproquest_RIE%3E1523404949%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1468846071&rft_id=info:pmid/24806642&rft_ieee_id=6414645&rfr_iscdi=true