Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns

Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor—neochrome—that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-05, Vol.111 (18), p.6672-6677
Hauptverfasser: Li, Fay-Wei, Villarreal, Juan Carlos, Kelly, Steven, Rothfels, Carl J., Melkonian, Michael, Frangedakis, Eftychios, Ruhsam, Markus, Sigel, Erin M., Der, Joshua P., Pittermann, Jarmila, Burge, Dylan O., Pokorny, Lisa, Larsson, Anders, Chen, Tao, Weststrand, Stina, Thomas, Philip, Carpenter, Eric, Zhang, Yong, Tian, Zhijian, Li Chen, Yan, Zhixiang, Zhu, Ying, Sun, Xiao, Wang, Jun, Stevenson, Dennis W., Crandall-Stotler, Barbara J., Shaw, A. Jonathan, Deyholos, Michael K., Soltis, Douglas E., Graham, Sean W., Windham, Michael D., Langdale, Jane A., Wong, Gane Ka-Shu, Mathews, Sarah, Pryer, Kathleen M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor—neochrome—that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus , we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns.
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.1319929111