Distance Oracles beyond the Thorup--Zwick Bound
We give the first improvement to the space/approximation trade-off of distance oracles since the seminal result of Thorup and Zwick. For unweighted undirected graphs, our distance oracle has size $O(n^{5/3})$ and, when queried about vertices at distance $d$, returns a path of length at most 2d+1. Fo...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 2014-01, Vol.43 (1), p.300-311 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give the first improvement to the space/approximation trade-off of distance oracles since the seminal result of Thorup and Zwick. For unweighted undirected graphs, our distance oracle has size $O(n^{5/3})$ and, when queried about vertices at distance $d$, returns a path of length at most 2d+1. For weighted undirected graphs with $m=n^2/\alpha$ edges, our distance oracle has size $O(n^2 / \sqrt[3]{\alpha})$ and returns a factor 2 approximation. Based on a plausible conjecture about the hardness of set intersection queries, we show that a 2-approximate distance oracle requires space $\widetilde{\Omega}(n^2 / \sqrt{\alpha})$. For unweighted graphs, this implies a $\widetilde{\Omega}(n^{1.5})$ space lower bound to achieve approximation 2d+1. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/11084128X |