Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems

In this study, thermal and heat transfer characteristics of the newly prepared composite as phase change material (PCM) comprising paraffin and hybrid nanomaterials (50 % CuO–50 % TiO 2 ) have been investigated for solar heating systems. Composite PCMs with 0.25, 0.5, 0.75, and 1.0 mass% of hybrid n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2014-02, Vol.115 (2), p.1563-1571
Hauptverfasser: Harikrishnan, S., Deepak, K., Kalaiselvam, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1571
container_issue 2
container_start_page 1563
container_title Journal of thermal analysis and calorimetry
container_volume 115
creator Harikrishnan, S.
Deepak, K.
Kalaiselvam, S.
description In this study, thermal and heat transfer characteristics of the newly prepared composite as phase change material (PCM) comprising paraffin and hybrid nanomaterials (50 % CuO–50 % TiO 2 ) have been investigated for solar heating systems. Composite PCMs with 0.25, 0.5, 0.75, and 1.0 mass% of hybrid nanomaterials were prepared individually for assessing their better performances than paraffin alone. Sodium dodecylbenzene sulfonate (SDBS) was preferred as the surfactant to ensure the dispersion stability of the nanomaterials in the paraffin and mass fraction of SDBS was 1.2 times of the mass fraction of hybrid nanomaterials in the paraffin. The thermal properties of the composite PCMs were determined by differential scanning calorimetry in terms of mass fractions of hybrid nanomaterials and number of thermal cycles. The thermal stabilities of the paraffin and composite PCMs were tested by thermogravimetric analyzer. The thermal conductivity and viscosity of the paraffin due to the addition of various mass fractions of CuO, TiO 2 , and hybrid nanomaterials were determined by LFA 447 NanoFlash analyzer and Brookfield DV-III Ultra programmable rheometer, respectively. The experimental results proved that the heating and cooling rates of composite PCMs were faster due to the dispersion of hybrid nanomaterials. For composite PCM with 1.0 mass% of hybrid nanomaterials, the melting and freezing times were reduced by 29.8 and 27.7 %, respectively, as compared with the paraffin.
doi_str_mv 10.1007/s10973-013-3472-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520967497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A371283535</galeid><sourcerecordid>A371283535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-8a917a5aeeb774fa9443672da1709cca4c6f2c7e751fc67268c2f5e21a3951423</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEmXhB3DzEQ4p_kji-Fit-KhUVATlbM16x4mrJF48TrX77_FqufSC5jAjz_P4MG9VvRf8WnCuP5HgRquaC1WrRsv6-KK6Em3f19LI7mWZVZk70fLX1RuiR865MVxcVePDiGmGieGCaTgxyjHBgGyHIzyFmFj0zMX5EClkZCuFZWDjaZfCni2wxBkypgATMSD2Y_ud-aJQnCCxESGfaTpRxpneVq984fDdv76pfn_5_LD9Vt_df73d3tzVTpkm1z0YoaEFxJ3WjQfTNKrTcg9Cc-McNK7z0mnUrfCuLLreSd-iFKBMKxqpNtWHy7-HFP-sSNnOgRxOEywYV7Kildx0uinX2lTXF3SACW1YfMwJXKk9zsHFBX0o7zdKC9mrttSm-vhMKEzGYx5gJbK3v34-Z8WFdSkSJfT2kMIM6WQFt-fI7CUyWyKz58jssTjy4lBhlwGTfYxrWsq5_iP9BeaBmeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520967497</pqid></control><display><type>article</type><title>Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems</title><source>SpringerNature Journals</source><creator>Harikrishnan, S. ; Deepak, K. ; Kalaiselvam, S.</creator><creatorcontrib>Harikrishnan, S. ; Deepak, K. ; Kalaiselvam, S.</creatorcontrib><description>In this study, thermal and heat transfer characteristics of the newly prepared composite as phase change material (PCM) comprising paraffin and hybrid nanomaterials (50 % CuO–50 % TiO 2 ) have been investigated for solar heating systems. Composite PCMs with 0.25, 0.5, 0.75, and 1.0 mass% of hybrid nanomaterials were prepared individually for assessing their better performances than paraffin alone. Sodium dodecylbenzene sulfonate (SDBS) was preferred as the surfactant to ensure the dispersion stability of the nanomaterials in the paraffin and mass fraction of SDBS was 1.2 times of the mass fraction of hybrid nanomaterials in the paraffin. The thermal properties of the composite PCMs were determined by differential scanning calorimetry in terms of mass fractions of hybrid nanomaterials and number of thermal cycles. The thermal stabilities of the paraffin and composite PCMs were tested by thermogravimetric analyzer. The thermal conductivity and viscosity of the paraffin due to the addition of various mass fractions of CuO, TiO 2 , and hybrid nanomaterials were determined by LFA 447 NanoFlash analyzer and Brookfield DV-III Ultra programmable rheometer, respectively. The experimental results proved that the heating and cooling rates of composite PCMs were faster due to the dispersion of hybrid nanomaterials. For composite PCM with 1.0 mass% of hybrid nanomaterials, the melting and freezing times were reduced by 29.8 and 27.7 %, respectively, as compared with the paraffin.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>EISSN: 1572-8943</identifier><identifier>DOI: 10.1007/s10973-013-3472-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alkylbenzene sulfonate ; Analytical Chemistry ; Analyzers ; Chemistry ; Chemistry and Materials Science ; Copper oxide ; Cuprite ; Dispersions ; Electric properties ; Equipment and supplies ; Heat storage ; Heat transfer ; Heating ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Nanomaterials ; Paraffins ; Physical Chemistry ; Polymer Sciences ; Rheometers ; Solar heating ; Surface active agents ; Thermal properties ; Titanium dioxide</subject><ispartof>Journal of thermal analysis and calorimetry, 2014-02, Vol.115 (2), p.1563-1571</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2013</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-8a917a5aeeb774fa9443672da1709cca4c6f2c7e751fc67268c2f5e21a3951423</citedby><cites>FETCH-LOGICAL-c394t-8a917a5aeeb774fa9443672da1709cca4c6f2c7e751fc67268c2f5e21a3951423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-013-3472-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-013-3472-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Harikrishnan, S.</creatorcontrib><creatorcontrib>Deepak, K.</creatorcontrib><creatorcontrib>Kalaiselvam, S.</creatorcontrib><title>Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>In this study, thermal and heat transfer characteristics of the newly prepared composite as phase change material (PCM) comprising paraffin and hybrid nanomaterials (50 % CuO–50 % TiO 2 ) have been investigated for solar heating systems. Composite PCMs with 0.25, 0.5, 0.75, and 1.0 mass% of hybrid nanomaterials were prepared individually for assessing their better performances than paraffin alone. Sodium dodecylbenzene sulfonate (SDBS) was preferred as the surfactant to ensure the dispersion stability of the nanomaterials in the paraffin and mass fraction of SDBS was 1.2 times of the mass fraction of hybrid nanomaterials in the paraffin. The thermal properties of the composite PCMs were determined by differential scanning calorimetry in terms of mass fractions of hybrid nanomaterials and number of thermal cycles. The thermal stabilities of the paraffin and composite PCMs were tested by thermogravimetric analyzer. The thermal conductivity and viscosity of the paraffin due to the addition of various mass fractions of CuO, TiO 2 , and hybrid nanomaterials were determined by LFA 447 NanoFlash analyzer and Brookfield DV-III Ultra programmable rheometer, respectively. The experimental results proved that the heating and cooling rates of composite PCMs were faster due to the dispersion of hybrid nanomaterials. For composite PCM with 1.0 mass% of hybrid nanomaterials, the melting and freezing times were reduced by 29.8 and 27.7 %, respectively, as compared with the paraffin.</description><subject>Alkylbenzene sulfonate</subject><subject>Analytical Chemistry</subject><subject>Analyzers</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Copper oxide</subject><subject>Cuprite</subject><subject>Dispersions</subject><subject>Electric properties</subject><subject>Equipment and supplies</subject><subject>Heat storage</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Nanomaterials</subject><subject>Paraffins</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Rheometers</subject><subject>Solar heating</subject><subject>Surface active agents</subject><subject>Thermal properties</subject><subject>Titanium dioxide</subject><issn>1388-6150</issn><issn>1588-2926</issn><issn>1572-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEEmXhB3DzEQ4p_kji-Fit-KhUVATlbM16x4mrJF48TrX77_FqufSC5jAjz_P4MG9VvRf8WnCuP5HgRquaC1WrRsv6-KK6Em3f19LI7mWZVZk70fLX1RuiR865MVxcVePDiGmGieGCaTgxyjHBgGyHIzyFmFj0zMX5EClkZCuFZWDjaZfCni2wxBkypgATMSD2Y_ud-aJQnCCxESGfaTpRxpneVq984fDdv76pfn_5_LD9Vt_df73d3tzVTpkm1z0YoaEFxJ3WjQfTNKrTcg9Cc-McNK7z0mnUrfCuLLreSd-iFKBMKxqpNtWHy7-HFP-sSNnOgRxOEywYV7Kildx0uinX2lTXF3SACW1YfMwJXKk9zsHFBX0o7zdKC9mrttSm-vhMKEzGYx5gJbK3v34-Z8WFdSkSJfT2kMIM6WQFt-fI7CUyWyKz58jssTjy4lBhlwGTfYxrWsq5_iP9BeaBmeo</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Harikrishnan, S.</creator><creator>Deepak, K.</creator><creator>Kalaiselvam, S.</creator><general>Springer Netherlands</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140201</creationdate><title>Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems</title><author>Harikrishnan, S. ; Deepak, K. ; Kalaiselvam, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-8a917a5aeeb774fa9443672da1709cca4c6f2c7e751fc67268c2f5e21a3951423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alkylbenzene sulfonate</topic><topic>Analytical Chemistry</topic><topic>Analyzers</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Copper oxide</topic><topic>Cuprite</topic><topic>Dispersions</topic><topic>Electric properties</topic><topic>Equipment and supplies</topic><topic>Heat storage</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Nanomaterials</topic><topic>Paraffins</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Rheometers</topic><topic>Solar heating</topic><topic>Surface active agents</topic><topic>Thermal properties</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harikrishnan, S.</creatorcontrib><creatorcontrib>Deepak, K.</creatorcontrib><creatorcontrib>Kalaiselvam, S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harikrishnan, S.</au><au>Deepak, K.</au><au>Kalaiselvam, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>115</volume><issue>2</issue><spage>1563</spage><epage>1571</epage><pages>1563-1571</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><eissn>1572-8943</eissn><abstract>In this study, thermal and heat transfer characteristics of the newly prepared composite as phase change material (PCM) comprising paraffin and hybrid nanomaterials (50 % CuO–50 % TiO 2 ) have been investigated for solar heating systems. Composite PCMs with 0.25, 0.5, 0.75, and 1.0 mass% of hybrid nanomaterials were prepared individually for assessing their better performances than paraffin alone. Sodium dodecylbenzene sulfonate (SDBS) was preferred as the surfactant to ensure the dispersion stability of the nanomaterials in the paraffin and mass fraction of SDBS was 1.2 times of the mass fraction of hybrid nanomaterials in the paraffin. The thermal properties of the composite PCMs were determined by differential scanning calorimetry in terms of mass fractions of hybrid nanomaterials and number of thermal cycles. The thermal stabilities of the paraffin and composite PCMs were tested by thermogravimetric analyzer. The thermal conductivity and viscosity of the paraffin due to the addition of various mass fractions of CuO, TiO 2 , and hybrid nanomaterials were determined by LFA 447 NanoFlash analyzer and Brookfield DV-III Ultra programmable rheometer, respectively. The experimental results proved that the heating and cooling rates of composite PCMs were faster due to the dispersion of hybrid nanomaterials. For composite PCM with 1.0 mass% of hybrid nanomaterials, the melting and freezing times were reduced by 29.8 and 27.7 %, respectively, as compared with the paraffin.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-013-3472-x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2014-02, Vol.115 (2), p.1563-1571
issn 1388-6150
1588-2926
1572-8943
language eng
recordid cdi_proquest_miscellaneous_1520967497
source SpringerNature Journals
subjects Alkylbenzene sulfonate
Analytical Chemistry
Analyzers
Chemistry
Chemistry and Materials Science
Copper oxide
Cuprite
Dispersions
Electric properties
Equipment and supplies
Heat storage
Heat transfer
Heating
Inorganic Chemistry
Measurement Science and Instrumentation
Nanomaterials
Paraffins
Physical Chemistry
Polymer Sciences
Rheometers
Solar heating
Surface active agents
Thermal properties
Titanium dioxide
title Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A21%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20energy%20storage%20behavior%20of%20composite%20using%20hybrid%20nanomaterials%20as%20PCM%20for%20solar%20heating%20systems&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Harikrishnan,%20S.&rft.date=2014-02-01&rft.volume=115&rft.issue=2&rft.spage=1563&rft.epage=1571&rft.pages=1563-1571&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-013-3472-x&rft_dat=%3Cgale_proqu%3EA371283535%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520967497&rft_id=info:pmid/&rft_galeid=A371283535&rfr_iscdi=true