Reconstruction of the Discontinuity Line of a Piecewise-Constant Coefficient in the Two-Dimensional Internal Initial–Boundary Value Problem for the Homogeneous Heat Equation

We investigate the reconstruction of the discontinuity line of a piecewise-constant coefficient in the two-dimension internal initial–boundary value problem for the one-dimensional heat equation. Supplementary data include the direct problem solution, which is known for finitely many boundary points...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and modeling 2014, Vol.25 (1), p.49-56
Hauptverfasser: Golovina, S. G., Razborov, A. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 49
container_title Computational mathematics and modeling
container_volume 25
creator Golovina, S. G.
Razborov, A. G.
description We investigate the reconstruction of the discontinuity line of a piecewise-constant coefficient in the two-dimension internal initial–boundary value problem for the one-dimensional heat equation. Supplementary data include the direct problem solution, which is known for finitely many boundary points at all times. The results of computer experiments reported in the article show that the inverse problem is well-conditioned in this setting. The direct problem has been reduced to the boundary-value problem for the Helmholtz equation and its solution was expressed in terms of potentials.
doi_str_mv 10.1007/s10598-013-9206-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520967453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520967453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236x-9a2adb5b87ea07f324e756d038414ec798e70ba3ed1b7aad79fc23c48839d0c93</originalsourceid><addsrcrecordid>eNp9kUFu1TAURSNEJUrpAph5yMTwHCexM4Tfll_pS1SorTqzHOeluErs1nbU3xl7YCHsiZXg_DBm5Cv7nqvnd4viPYOPDEB8igzqVlJgnLYlNHT_qjhmteBUcnH3OmuoGlpKfvemeBvjAwDIksNx8fs7Gu9iCrNJ1jviB5J-IDmzMV8n62abXsjOOlxeNLmyaPDZRqSbhdIukY3HYbDGYtbWHejrZ0_P7IQu5kg9kkuXMKzCJqvHPz9_ffGz63V4Ibd6nJFcBd-NOJHBh0PC1k_-Hh36OZIt6kTOn2a9DPiuOBr0GPH033lS3FycX2-2dPft6-Xm846akjd72upS913dSYEaxMDLCkXd9MBlxSo0opUooNMce9YJrXvRDhk0lZS87cG0_KT4sOY-Bv80Y0xqyivBcdSHoRSrS2gbUdU8W9lqNcHHGHBQj8FO-W-KgVrKUWs5KpejlnLUPjPlysTsdfcY1IOflxXF_0B_AS1QmEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520967453</pqid></control><display><type>article</type><title>Reconstruction of the Discontinuity Line of a Piecewise-Constant Coefficient in the Two-Dimensional Internal Initial–Boundary Value Problem for the Homogeneous Heat Equation</title><source>Springer Nature - Complete Springer Journals</source><creator>Golovina, S. G. ; Razborov, A. G.</creator><creatorcontrib>Golovina, S. G. ; Razborov, A. G.</creatorcontrib><description>We investigate the reconstruction of the discontinuity line of a piecewise-constant coefficient in the two-dimension internal initial–boundary value problem for the one-dimensional heat equation. Supplementary data include the direct problem solution, which is known for finitely many boundary points at all times. The results of computer experiments reported in the article show that the inverse problem is well-conditioned in this setting. The direct problem has been reduced to the boundary-value problem for the Helmholtz equation and its solution was expressed in terms of potentials.</description><identifier>ISSN: 1046-283X</identifier><identifier>EISSN: 1573-837X</identifier><identifier>DOI: 10.1007/s10598-013-9206-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Boundary value problems ; Computational Mathematics and Numerical Analysis ; Discontinuity ; Heat equations ; Initial value problems ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Optimization ; Reconstruction ; Two dimensional</subject><ispartof>Computational mathematics and modeling, 2014, Vol.25 (1), p.49-56</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c236x-9a2adb5b87ea07f324e756d038414ec798e70ba3ed1b7aad79fc23c48839d0c93</citedby><cites>FETCH-LOGICAL-c236x-9a2adb5b87ea07f324e756d038414ec798e70ba3ed1b7aad79fc23c48839d0c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10598-013-9206-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10598-013-9206-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Golovina, S. G.</creatorcontrib><creatorcontrib>Razborov, A. G.</creatorcontrib><title>Reconstruction of the Discontinuity Line of a Piecewise-Constant Coefficient in the Two-Dimensional Internal Initial–Boundary Value Problem for the Homogeneous Heat Equation</title><title>Computational mathematics and modeling</title><addtitle>Comput Math Model</addtitle><description>We investigate the reconstruction of the discontinuity line of a piecewise-constant coefficient in the two-dimension internal initial–boundary value problem for the one-dimensional heat equation. Supplementary data include the direct problem solution, which is known for finitely many boundary points at all times. The results of computer experiments reported in the article show that the inverse problem is well-conditioned in this setting. The direct problem has been reduced to the boundary-value problem for the Helmholtz equation and its solution was expressed in terms of potentials.</description><subject>Applications of Mathematics</subject><subject>Boundary value problems</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Discontinuity</subject><subject>Heat equations</subject><subject>Initial value problems</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Reconstruction</subject><subject>Two dimensional</subject><issn>1046-283X</issn><issn>1573-837X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kUFu1TAURSNEJUrpAph5yMTwHCexM4Tfll_pS1SorTqzHOeluErs1nbU3xl7YCHsiZXg_DBm5Cv7nqvnd4viPYOPDEB8igzqVlJgnLYlNHT_qjhmteBUcnH3OmuoGlpKfvemeBvjAwDIksNx8fs7Gu9iCrNJ1jviB5J-IDmzMV8n62abXsjOOlxeNLmyaPDZRqSbhdIukY3HYbDGYtbWHejrZ0_P7IQu5kg9kkuXMKzCJqvHPz9_ffGz63V4Ibd6nJFcBd-NOJHBh0PC1k_-Hh36OZIt6kTOn2a9DPiuOBr0GPH033lS3FycX2-2dPft6-Xm846akjd72upS913dSYEaxMDLCkXd9MBlxSo0opUooNMce9YJrXvRDhk0lZS87cG0_KT4sOY-Bv80Y0xqyivBcdSHoRSrS2gbUdU8W9lqNcHHGHBQj8FO-W-KgVrKUWs5KpejlnLUPjPlysTsdfcY1IOflxXF_0B_AS1QmEY</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Golovina, S. G.</creator><creator>Razborov, A. G.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2014</creationdate><title>Reconstruction of the Discontinuity Line of a Piecewise-Constant Coefficient in the Two-Dimensional Internal Initial–Boundary Value Problem for the Homogeneous Heat Equation</title><author>Golovina, S. G. ; Razborov, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236x-9a2adb5b87ea07f324e756d038414ec798e70ba3ed1b7aad79fc23c48839d0c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Mathematics</topic><topic>Boundary value problems</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Discontinuity</topic><topic>Heat equations</topic><topic>Initial value problems</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Reconstruction</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golovina, S. G.</creatorcontrib><creatorcontrib>Razborov, A. G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golovina, S. G.</au><au>Razborov, A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of the Discontinuity Line of a Piecewise-Constant Coefficient in the Two-Dimensional Internal Initial–Boundary Value Problem for the Homogeneous Heat Equation</atitle><jtitle>Computational mathematics and modeling</jtitle><stitle>Comput Math Model</stitle><date>2014</date><risdate>2014</risdate><volume>25</volume><issue>1</issue><spage>49</spage><epage>56</epage><pages>49-56</pages><issn>1046-283X</issn><eissn>1573-837X</eissn><abstract>We investigate the reconstruction of the discontinuity line of a piecewise-constant coefficient in the two-dimension internal initial–boundary value problem for the one-dimensional heat equation. Supplementary data include the direct problem solution, which is known for finitely many boundary points at all times. The results of computer experiments reported in the article show that the inverse problem is well-conditioned in this setting. The direct problem has been reduced to the boundary-value problem for the Helmholtz equation and its solution was expressed in terms of potentials.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10598-013-9206-x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1046-283X
ispartof Computational mathematics and modeling, 2014, Vol.25 (1), p.49-56
issn 1046-283X
1573-837X
language eng
recordid cdi_proquest_miscellaneous_1520967453
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Boundary value problems
Computational Mathematics and Numerical Analysis
Discontinuity
Heat equations
Initial value problems
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Optimization
Reconstruction
Two dimensional
title Reconstruction of the Discontinuity Line of a Piecewise-Constant Coefficient in the Two-Dimensional Internal Initial–Boundary Value Problem for the Homogeneous Heat Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20the%20Discontinuity%20Line%20of%20a%20Piecewise-Constant%20Coefficient%20in%20the%20Two-Dimensional%20Internal%20Initial%E2%80%93Boundary%20Value%20Problem%20for%20the%20Homogeneous%20Heat%20Equation&rft.jtitle=Computational%20mathematics%20and%20modeling&rft.au=Golovina,%20S.%20G.&rft.date=2014&rft.volume=25&rft.issue=1&rft.spage=49&rft.epage=56&rft.pages=49-56&rft.issn=1046-283X&rft.eissn=1573-837X&rft_id=info:doi/10.1007/s10598-013-9206-x&rft_dat=%3Cproquest_cross%3E1520967453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520967453&rft_id=info:pmid/&rfr_iscdi=true