Reconstruction of the Discontinuity Line of a Piecewise-Constant Coefficient in the Two-Dimensional Internal Initial–Boundary Value Problem for the Homogeneous Heat Equation
We investigate the reconstruction of the discontinuity line of a piecewise-constant coefficient in the two-dimension internal initial–boundary value problem for the one-dimensional heat equation. Supplementary data include the direct problem solution, which is known for finitely many boundary points...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and modeling 2014, Vol.25 (1), p.49-56 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Computational mathematics and modeling |
container_volume | 25 |
creator | Golovina, S. G. Razborov, A. G. |
description | We investigate the reconstruction of the discontinuity line of a piecewise-constant coefficient in the two-dimension internal initial–boundary value problem for the one-dimensional heat equation. Supplementary data include the direct problem solution, which is known for finitely many boundary points at all times. The results of computer experiments reported in the article show that the inverse problem is well-conditioned in this setting. The direct problem has been reduced to the boundary-value problem for the Helmholtz equation and its solution was expressed in terms of potentials. |
doi_str_mv | 10.1007/s10598-013-9206-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520967453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520967453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236x-9a2adb5b87ea07f324e756d038414ec798e70ba3ed1b7aad79fc23c48839d0c93</originalsourceid><addsrcrecordid>eNp9kUFu1TAURSNEJUrpAph5yMTwHCexM4Tfll_pS1SorTqzHOeluErs1nbU3xl7YCHsiZXg_DBm5Cv7nqvnd4viPYOPDEB8igzqVlJgnLYlNHT_qjhmteBUcnH3OmuoGlpKfvemeBvjAwDIksNx8fs7Gu9iCrNJ1jviB5J-IDmzMV8n62abXsjOOlxeNLmyaPDZRqSbhdIukY3HYbDGYtbWHejrZ0_P7IQu5kg9kkuXMKzCJqvHPz9_ffGz63V4Ibd6nJFcBd-NOJHBh0PC1k_-Hh36OZIt6kTOn2a9DPiuOBr0GPH033lS3FycX2-2dPft6-Xm846akjd72upS913dSYEaxMDLCkXd9MBlxSo0opUooNMce9YJrXvRDhk0lZS87cG0_KT4sOY-Bv80Y0xqyivBcdSHoRSrS2gbUdU8W9lqNcHHGHBQj8FO-W-KgVrKUWs5KpejlnLUPjPlysTsdfcY1IOflxXF_0B_AS1QmEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520967453</pqid></control><display><type>article</type><title>Reconstruction of the Discontinuity Line of a Piecewise-Constant Coefficient in the Two-Dimensional Internal Initial–Boundary Value Problem for the Homogeneous Heat Equation</title><source>Springer Nature - Complete Springer Journals</source><creator>Golovina, S. G. ; Razborov, A. G.</creator><creatorcontrib>Golovina, S. G. ; Razborov, A. G.</creatorcontrib><description>We investigate the reconstruction of the discontinuity line of a piecewise-constant coefficient in the two-dimension internal initial–boundary value problem for the one-dimensional heat equation. Supplementary data include the direct problem solution, which is known for finitely many boundary points at all times. The results of computer experiments reported in the article show that the inverse problem is well-conditioned in this setting. The direct problem has been reduced to the boundary-value problem for the Helmholtz equation and its solution was expressed in terms of potentials.</description><identifier>ISSN: 1046-283X</identifier><identifier>EISSN: 1573-837X</identifier><identifier>DOI: 10.1007/s10598-013-9206-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applications of Mathematics ; Boundary value problems ; Computational Mathematics and Numerical Analysis ; Discontinuity ; Heat equations ; Initial value problems ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Optimization ; Reconstruction ; Two dimensional</subject><ispartof>Computational mathematics and modeling, 2014, Vol.25 (1), p.49-56</ispartof><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c236x-9a2adb5b87ea07f324e756d038414ec798e70ba3ed1b7aad79fc23c48839d0c93</citedby><cites>FETCH-LOGICAL-c236x-9a2adb5b87ea07f324e756d038414ec798e70ba3ed1b7aad79fc23c48839d0c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10598-013-9206-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10598-013-9206-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Golovina, S. G.</creatorcontrib><creatorcontrib>Razborov, A. G.</creatorcontrib><title>Reconstruction of the Discontinuity Line of a Piecewise-Constant Coefficient in the Two-Dimensional Internal Initial–Boundary Value Problem for the Homogeneous Heat Equation</title><title>Computational mathematics and modeling</title><addtitle>Comput Math Model</addtitle><description>We investigate the reconstruction of the discontinuity line of a piecewise-constant coefficient in the two-dimension internal initial–boundary value problem for the one-dimensional heat equation. Supplementary data include the direct problem solution, which is known for finitely many boundary points at all times. The results of computer experiments reported in the article show that the inverse problem is well-conditioned in this setting. The direct problem has been reduced to the boundary-value problem for the Helmholtz equation and its solution was expressed in terms of potentials.</description><subject>Applications of Mathematics</subject><subject>Boundary value problems</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Discontinuity</subject><subject>Heat equations</subject><subject>Initial value problems</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Reconstruction</subject><subject>Two dimensional</subject><issn>1046-283X</issn><issn>1573-837X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kUFu1TAURSNEJUrpAph5yMTwHCexM4Tfll_pS1SorTqzHOeluErs1nbU3xl7YCHsiZXg_DBm5Cv7nqvnd4viPYOPDEB8igzqVlJgnLYlNHT_qjhmteBUcnH3OmuoGlpKfvemeBvjAwDIksNx8fs7Gu9iCrNJ1jviB5J-IDmzMV8n62abXsjOOlxeNLmyaPDZRqSbhdIukY3HYbDGYtbWHejrZ0_P7IQu5kg9kkuXMKzCJqvHPz9_ffGz63V4Ibd6nJFcBd-NOJHBh0PC1k_-Hh36OZIt6kTOn2a9DPiuOBr0GPH033lS3FycX2-2dPft6-Xm846akjd72upS913dSYEaxMDLCkXd9MBlxSo0opUooNMce9YJrXvRDhk0lZS87cG0_KT4sOY-Bv80Y0xqyivBcdSHoRSrS2gbUdU8W9lqNcHHGHBQj8FO-W-KgVrKUWs5KpejlnLUPjPlysTsdfcY1IOflxXF_0B_AS1QmEY</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Golovina, S. G.</creator><creator>Razborov, A. G.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2014</creationdate><title>Reconstruction of the Discontinuity Line of a Piecewise-Constant Coefficient in the Two-Dimensional Internal Initial–Boundary Value Problem for the Homogeneous Heat Equation</title><author>Golovina, S. G. ; Razborov, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236x-9a2adb5b87ea07f324e756d038414ec798e70ba3ed1b7aad79fc23c48839d0c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Mathematics</topic><topic>Boundary value problems</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Discontinuity</topic><topic>Heat equations</topic><topic>Initial value problems</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Reconstruction</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golovina, S. G.</creatorcontrib><creatorcontrib>Razborov, A. G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golovina, S. G.</au><au>Razborov, A. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstruction of the Discontinuity Line of a Piecewise-Constant Coefficient in the Two-Dimensional Internal Initial–Boundary Value Problem for the Homogeneous Heat Equation</atitle><jtitle>Computational mathematics and modeling</jtitle><stitle>Comput Math Model</stitle><date>2014</date><risdate>2014</risdate><volume>25</volume><issue>1</issue><spage>49</spage><epage>56</epage><pages>49-56</pages><issn>1046-283X</issn><eissn>1573-837X</eissn><abstract>We investigate the reconstruction of the discontinuity line of a piecewise-constant coefficient in the two-dimension internal initial–boundary value problem for the one-dimensional heat equation. Supplementary data include the direct problem solution, which is known for finitely many boundary points at all times. The results of computer experiments reported in the article show that the inverse problem is well-conditioned in this setting. The direct problem has been reduced to the boundary-value problem for the Helmholtz equation and its solution was expressed in terms of potentials.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10598-013-9206-x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1046-283X |
ispartof | Computational mathematics and modeling, 2014, Vol.25 (1), p.49-56 |
issn | 1046-283X 1573-837X |
language | eng |
recordid | cdi_proquest_miscellaneous_1520967453 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Boundary value problems Computational Mathematics and Numerical Analysis Discontinuity Heat equations Initial value problems Mathematical analysis Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Optimization Reconstruction Two dimensional |
title | Reconstruction of the Discontinuity Line of a Piecewise-Constant Coefficient in the Two-Dimensional Internal Initial–Boundary Value Problem for the Homogeneous Heat Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstruction%20of%20the%20Discontinuity%20Line%20of%20a%20Piecewise-Constant%20Coefficient%20in%20the%20Two-Dimensional%20Internal%20Initial%E2%80%93Boundary%20Value%20Problem%20for%20the%20Homogeneous%20Heat%20Equation&rft.jtitle=Computational%20mathematics%20and%20modeling&rft.au=Golovina,%20S.%20G.&rft.date=2014&rft.volume=25&rft.issue=1&rft.spage=49&rft.epage=56&rft.pages=49-56&rft.issn=1046-283X&rft.eissn=1573-837X&rft_id=info:doi/10.1007/s10598-013-9206-x&rft_dat=%3Cproquest_cross%3E1520967453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520967453&rft_id=info:pmid/&rfr_iscdi=true |