Theory of rolling: Solution of the Coulomb problem
A theory of rolling of round bodies in the normal mode with adhesion conditions satisfied on the entire contact area is proposed. This theory refines the classical Coulomb’s theory of rolling in which the rolling moment is directly proportional to the pressing force (e.g., the weight of the rolling...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics and technical physics 2014, Vol.55 (1), p.182-189 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | 1 |
container_start_page | 182 |
container_title | Journal of applied mechanics and technical physics |
container_volume | 55 |
creator | Cherepanov, G. P. |
description | A theory of rolling of round bodies in the normal mode with adhesion conditions satisfied on the entire contact area is proposed. This theory refines the classical Coulomb’s theory of rolling in which the rolling moment is directly proportional to the pressing force (e.g., the weight of the rolling body). The rolling moment of cylinders is found to be directly proportional to the pressing force raised to a power of 3/2, and the rolling moment of balls and tori is proportional to the pressing force raised to a power of 4/3. It is shown that the normal mode of uniform rolling can only be provided for a certain ratio of the elastic constants of the materials of the round body and the base forming an ideal pair. The Coulomb problem is solved for the cases of rolling of an elastic cylinder over an elastic half-space, of an elastic ball over an elastic half-space, of an elastic torus over an elastic half-space, and of a cylinder and ball over a tightly stretched membrane. The rolling law is derived for such cases. The rolling friction coefficients, the rolling moment, and the rolling friction force are calculated. |
doi_str_mv | 10.1134/S0021894414010210 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520967306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520967306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-8dac631e2a8bf2693ce381cb6e7d48f1e7de74ac744b2f31d5d5f3875ca2c8d93</originalsourceid><addsrcrecordid>eNp9ULFOwzAUtBBIhMIHsGVkCfjZTuywoQoKUiWGltlyHLtN5cTFTob-PY7KhsR0T-_u3ukdQveAHwEoe9pgTEDUjAHDkEZ8gTIoOS1ERfAlyma6mPlrdBPjAWNcC-AZItu98eGUe5sH71w37J7zjXfT2PlhXo57ky_95Hzf5MfgG2f6W3RllYvm7hcX6Ovtdbt8L9afq4_ly7rQlMBYiFbpioIhSjSWVDXVhgrQTWV4y4SFBIYzpTljDbEU2rItLRW81Ipo0dZ0gR7Od1Pu92TiKPsuauOcGoyfooSS4LriFFdJCmepDj7GYKw8hq5X4SQBy7kf-aef5CFnT0zaYWeCPPgpDOmjf0w_8stmIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520967306</pqid></control><display><type>article</type><title>Theory of rolling: Solution of the Coulomb problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cherepanov, G. P.</creator><creatorcontrib>Cherepanov, G. P.</creatorcontrib><description>A theory of rolling of round bodies in the normal mode with adhesion conditions satisfied on the entire contact area is proposed. This theory refines the classical Coulomb’s theory of rolling in which the rolling moment is directly proportional to the pressing force (e.g., the weight of the rolling body). The rolling moment of cylinders is found to be directly proportional to the pressing force raised to a power of 3/2, and the rolling moment of balls and tori is proportional to the pressing force raised to a power of 4/3. It is shown that the normal mode of uniform rolling can only be provided for a certain ratio of the elastic constants of the materials of the round body and the base forming an ideal pair. The Coulomb problem is solved for the cases of rolling of an elastic cylinder over an elastic half-space, of an elastic ball over an elastic half-space, of an elastic torus over an elastic half-space, and of a cylinder and ball over a tightly stretched membrane. The rolling law is derived for such cases. The rolling friction coefficients, the rolling moment, and the rolling friction force are calculated.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1134/S0021894414010210</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adhesion ; Applications of Mathematics ; Classical and Continuum Physics ; Classical Mechanics ; Coulomb friction ; Cylinders ; Fluid- and Aerodynamics ; Half spaces ; Mathematical Modeling and Industrial Mathematics ; Mechanical Engineering ; Physics ; Physics and Astronomy ; Pressing ; Rolling friction ; Rolling moments</subject><ispartof>Journal of applied mechanics and technical physics, 2014, Vol.55 (1), p.182-189</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-8dac631e2a8bf2693ce381cb6e7d48f1e7de74ac744b2f31d5d5f3875ca2c8d93</citedby><cites>FETCH-LOGICAL-c321t-8dac631e2a8bf2693ce381cb6e7d48f1e7de74ac744b2f31d5d5f3875ca2c8d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021894414010210$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021894414010210$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cherepanov, G. P.</creatorcontrib><title>Theory of rolling: Solution of the Coulomb problem</title><title>Journal of applied mechanics and technical physics</title><addtitle>J Appl Mech Tech Phy</addtitle><description>A theory of rolling of round bodies in the normal mode with adhesion conditions satisfied on the entire contact area is proposed. This theory refines the classical Coulomb’s theory of rolling in which the rolling moment is directly proportional to the pressing force (e.g., the weight of the rolling body). The rolling moment of cylinders is found to be directly proportional to the pressing force raised to a power of 3/2, and the rolling moment of balls and tori is proportional to the pressing force raised to a power of 4/3. It is shown that the normal mode of uniform rolling can only be provided for a certain ratio of the elastic constants of the materials of the round body and the base forming an ideal pair. The Coulomb problem is solved for the cases of rolling of an elastic cylinder over an elastic half-space, of an elastic ball over an elastic half-space, of an elastic torus over an elastic half-space, and of a cylinder and ball over a tightly stretched membrane. The rolling law is derived for such cases. The rolling friction coefficients, the rolling moment, and the rolling friction force are calculated.</description><subject>Adhesion</subject><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Coulomb friction</subject><subject>Cylinders</subject><subject>Fluid- and Aerodynamics</subject><subject>Half spaces</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical Engineering</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pressing</subject><subject>Rolling friction</subject><subject>Rolling moments</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9ULFOwzAUtBBIhMIHsGVkCfjZTuywoQoKUiWGltlyHLtN5cTFTob-PY7KhsR0T-_u3ukdQveAHwEoe9pgTEDUjAHDkEZ8gTIoOS1ERfAlyma6mPlrdBPjAWNcC-AZItu98eGUe5sH71w37J7zjXfT2PlhXo57ky_95Hzf5MfgG2f6W3RllYvm7hcX6Ovtdbt8L9afq4_ly7rQlMBYiFbpioIhSjSWVDXVhgrQTWV4y4SFBIYzpTljDbEU2rItLRW81Ipo0dZ0gR7Od1Pu92TiKPsuauOcGoyfooSS4LriFFdJCmepDj7GYKw8hq5X4SQBy7kf-aef5CFnT0zaYWeCPPgpDOmjf0w_8stmIw</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Cherepanov, G. P.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2014</creationdate><title>Theory of rolling: Solution of the Coulomb problem</title><author>Cherepanov, G. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-8dac631e2a8bf2693ce381cb6e7d48f1e7de74ac744b2f31d5d5f3875ca2c8d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adhesion</topic><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Coulomb friction</topic><topic>Cylinders</topic><topic>Fluid- and Aerodynamics</topic><topic>Half spaces</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical Engineering</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pressing</topic><topic>Rolling friction</topic><topic>Rolling moments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherepanov, G. P.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherepanov, G. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of rolling: Solution of the Coulomb problem</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><stitle>J Appl Mech Tech Phy</stitle><date>2014</date><risdate>2014</risdate><volume>55</volume><issue>1</issue><spage>182</spage><epage>189</epage><pages>182-189</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>A theory of rolling of round bodies in the normal mode with adhesion conditions satisfied on the entire contact area is proposed. This theory refines the classical Coulomb’s theory of rolling in which the rolling moment is directly proportional to the pressing force (e.g., the weight of the rolling body). The rolling moment of cylinders is found to be directly proportional to the pressing force raised to a power of 3/2, and the rolling moment of balls and tori is proportional to the pressing force raised to a power of 4/3. It is shown that the normal mode of uniform rolling can only be provided for a certain ratio of the elastic constants of the materials of the round body and the base forming an ideal pair. The Coulomb problem is solved for the cases of rolling of an elastic cylinder over an elastic half-space, of an elastic ball over an elastic half-space, of an elastic torus over an elastic half-space, and of a cylinder and ball over a tightly stretched membrane. The rolling law is derived for such cases. The rolling friction coefficients, the rolling moment, and the rolling friction force are calculated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021894414010210</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8944 |
ispartof | Journal of applied mechanics and technical physics, 2014, Vol.55 (1), p.182-189 |
issn | 0021-8944 1573-8620 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520967306 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adhesion Applications of Mathematics Classical and Continuum Physics Classical Mechanics Coulomb friction Cylinders Fluid- and Aerodynamics Half spaces Mathematical Modeling and Industrial Mathematics Mechanical Engineering Physics Physics and Astronomy Pressing Rolling friction Rolling moments |
title | Theory of rolling: Solution of the Coulomb problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20rolling:%20Solution%20of%20the%20Coulomb%20problem&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Cherepanov,%20G.%20P.&rft.date=2014&rft.volume=55&rft.issue=1&rft.spage=182&rft.epage=189&rft.pages=182-189&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1134/S0021894414010210&rft_dat=%3Cproquest_cross%3E1520967306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520967306&rft_id=info:pmid/&rfr_iscdi=true |