Theory of rolling: Solution of the Coulomb problem

A theory of rolling of round bodies in the normal mode with adhesion conditions satisfied on the entire contact area is proposed. This theory refines the classical Coulomb’s theory of rolling in which the rolling moment is directly proportional to the pressing force (e.g., the weight of the rolling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics and technical physics 2014, Vol.55 (1), p.182-189
1. Verfasser: Cherepanov, G. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue 1
container_start_page 182
container_title Journal of applied mechanics and technical physics
container_volume 55
creator Cherepanov, G. P.
description A theory of rolling of round bodies in the normal mode with adhesion conditions satisfied on the entire contact area is proposed. This theory refines the classical Coulomb’s theory of rolling in which the rolling moment is directly proportional to the pressing force (e.g., the weight of the rolling body). The rolling moment of cylinders is found to be directly proportional to the pressing force raised to a power of 3/2, and the rolling moment of balls and tori is proportional to the pressing force raised to a power of 4/3. It is shown that the normal mode of uniform rolling can only be provided for a certain ratio of the elastic constants of the materials of the round body and the base forming an ideal pair. The Coulomb problem is solved for the cases of rolling of an elastic cylinder over an elastic half-space, of an elastic ball over an elastic half-space, of an elastic torus over an elastic half-space, and of a cylinder and ball over a tightly stretched membrane. The rolling law is derived for such cases. The rolling friction coefficients, the rolling moment, and the rolling friction force are calculated.
doi_str_mv 10.1134/S0021894414010210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520967306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520967306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-8dac631e2a8bf2693ce381cb6e7d48f1e7de74ac744b2f31d5d5f3875ca2c8d93</originalsourceid><addsrcrecordid>eNp9ULFOwzAUtBBIhMIHsGVkCfjZTuywoQoKUiWGltlyHLtN5cTFTob-PY7KhsR0T-_u3ukdQveAHwEoe9pgTEDUjAHDkEZ8gTIoOS1ERfAlyma6mPlrdBPjAWNcC-AZItu98eGUe5sH71w37J7zjXfT2PlhXo57ky_95Hzf5MfgG2f6W3RllYvm7hcX6Ovtdbt8L9afq4_ly7rQlMBYiFbpioIhSjSWVDXVhgrQTWV4y4SFBIYzpTljDbEU2rItLRW81Ipo0dZ0gR7Od1Pu92TiKPsuauOcGoyfooSS4LriFFdJCmepDj7GYKw8hq5X4SQBy7kf-aef5CFnT0zaYWeCPPgpDOmjf0w_8stmIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520967306</pqid></control><display><type>article</type><title>Theory of rolling: Solution of the Coulomb problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cherepanov, G. P.</creator><creatorcontrib>Cherepanov, G. P.</creatorcontrib><description>A theory of rolling of round bodies in the normal mode with adhesion conditions satisfied on the entire contact area is proposed. This theory refines the classical Coulomb’s theory of rolling in which the rolling moment is directly proportional to the pressing force (e.g., the weight of the rolling body). The rolling moment of cylinders is found to be directly proportional to the pressing force raised to a power of 3/2, and the rolling moment of balls and tori is proportional to the pressing force raised to a power of 4/3. It is shown that the normal mode of uniform rolling can only be provided for a certain ratio of the elastic constants of the materials of the round body and the base forming an ideal pair. The Coulomb problem is solved for the cases of rolling of an elastic cylinder over an elastic half-space, of an elastic ball over an elastic half-space, of an elastic torus over an elastic half-space, and of a cylinder and ball over a tightly stretched membrane. The rolling law is derived for such cases. The rolling friction coefficients, the rolling moment, and the rolling friction force are calculated.</description><identifier>ISSN: 0021-8944</identifier><identifier>EISSN: 1573-8620</identifier><identifier>DOI: 10.1134/S0021894414010210</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adhesion ; Applications of Mathematics ; Classical and Continuum Physics ; Classical Mechanics ; Coulomb friction ; Cylinders ; Fluid- and Aerodynamics ; Half spaces ; Mathematical Modeling and Industrial Mathematics ; Mechanical Engineering ; Physics ; Physics and Astronomy ; Pressing ; Rolling friction ; Rolling moments</subject><ispartof>Journal of applied mechanics and technical physics, 2014, Vol.55 (1), p.182-189</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-8dac631e2a8bf2693ce381cb6e7d48f1e7de74ac744b2f31d5d5f3875ca2c8d93</citedby><cites>FETCH-LOGICAL-c321t-8dac631e2a8bf2693ce381cb6e7d48f1e7de74ac744b2f31d5d5f3875ca2c8d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021894414010210$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021894414010210$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cherepanov, G. P.</creatorcontrib><title>Theory of rolling: Solution of the Coulomb problem</title><title>Journal of applied mechanics and technical physics</title><addtitle>J Appl Mech Tech Phy</addtitle><description>A theory of rolling of round bodies in the normal mode with adhesion conditions satisfied on the entire contact area is proposed. This theory refines the classical Coulomb’s theory of rolling in which the rolling moment is directly proportional to the pressing force (e.g., the weight of the rolling body). The rolling moment of cylinders is found to be directly proportional to the pressing force raised to a power of 3/2, and the rolling moment of balls and tori is proportional to the pressing force raised to a power of 4/3. It is shown that the normal mode of uniform rolling can only be provided for a certain ratio of the elastic constants of the materials of the round body and the base forming an ideal pair. The Coulomb problem is solved for the cases of rolling of an elastic cylinder over an elastic half-space, of an elastic ball over an elastic half-space, of an elastic torus over an elastic half-space, and of a cylinder and ball over a tightly stretched membrane. The rolling law is derived for such cases. The rolling friction coefficients, the rolling moment, and the rolling friction force are calculated.</description><subject>Adhesion</subject><subject>Applications of Mathematics</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Coulomb friction</subject><subject>Cylinders</subject><subject>Fluid- and Aerodynamics</subject><subject>Half spaces</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mechanical Engineering</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pressing</subject><subject>Rolling friction</subject><subject>Rolling moments</subject><issn>0021-8944</issn><issn>1573-8620</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9ULFOwzAUtBBIhMIHsGVkCfjZTuywoQoKUiWGltlyHLtN5cTFTob-PY7KhsR0T-_u3ukdQveAHwEoe9pgTEDUjAHDkEZ8gTIoOS1ERfAlyma6mPlrdBPjAWNcC-AZItu98eGUe5sH71w37J7zjXfT2PlhXo57ky_95Hzf5MfgG2f6W3RllYvm7hcX6Ovtdbt8L9afq4_ly7rQlMBYiFbpioIhSjSWVDXVhgrQTWV4y4SFBIYzpTljDbEU2rItLRW81Ipo0dZ0gR7Od1Pu92TiKPsuauOcGoyfooSS4LriFFdJCmepDj7GYKw8hq5X4SQBy7kf-aef5CFnT0zaYWeCPPgpDOmjf0w_8stmIw</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Cherepanov, G. P.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2014</creationdate><title>Theory of rolling: Solution of the Coulomb problem</title><author>Cherepanov, G. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-8dac631e2a8bf2693ce381cb6e7d48f1e7de74ac744b2f31d5d5f3875ca2c8d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adhesion</topic><topic>Applications of Mathematics</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Coulomb friction</topic><topic>Cylinders</topic><topic>Fluid- and Aerodynamics</topic><topic>Half spaces</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mechanical Engineering</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pressing</topic><topic>Rolling friction</topic><topic>Rolling moments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherepanov, G. P.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied mechanics and technical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherepanov, G. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of rolling: Solution of the Coulomb problem</atitle><jtitle>Journal of applied mechanics and technical physics</jtitle><stitle>J Appl Mech Tech Phy</stitle><date>2014</date><risdate>2014</risdate><volume>55</volume><issue>1</issue><spage>182</spage><epage>189</epage><pages>182-189</pages><issn>0021-8944</issn><eissn>1573-8620</eissn><abstract>A theory of rolling of round bodies in the normal mode with adhesion conditions satisfied on the entire contact area is proposed. This theory refines the classical Coulomb’s theory of rolling in which the rolling moment is directly proportional to the pressing force (e.g., the weight of the rolling body). The rolling moment of cylinders is found to be directly proportional to the pressing force raised to a power of 3/2, and the rolling moment of balls and tori is proportional to the pressing force raised to a power of 4/3. It is shown that the normal mode of uniform rolling can only be provided for a certain ratio of the elastic constants of the materials of the round body and the base forming an ideal pair. The Coulomb problem is solved for the cases of rolling of an elastic cylinder over an elastic half-space, of an elastic ball over an elastic half-space, of an elastic torus over an elastic half-space, and of a cylinder and ball over a tightly stretched membrane. The rolling law is derived for such cases. The rolling friction coefficients, the rolling moment, and the rolling friction force are calculated.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021894414010210</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8944
ispartof Journal of applied mechanics and technical physics, 2014, Vol.55 (1), p.182-189
issn 0021-8944
1573-8620
language eng
recordid cdi_proquest_miscellaneous_1520967306
source SpringerLink Journals - AutoHoldings
subjects Adhesion
Applications of Mathematics
Classical and Continuum Physics
Classical Mechanics
Coulomb friction
Cylinders
Fluid- and Aerodynamics
Half spaces
Mathematical Modeling and Industrial Mathematics
Mechanical Engineering
Physics
Physics and Astronomy
Pressing
Rolling friction
Rolling moments
title Theory of rolling: Solution of the Coulomb problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20rolling:%20Solution%20of%20the%20Coulomb%20problem&rft.jtitle=Journal%20of%20applied%20mechanics%20and%20technical%20physics&rft.au=Cherepanov,%20G.%20P.&rft.date=2014&rft.volume=55&rft.issue=1&rft.spage=182&rft.epage=189&rft.pages=182-189&rft.issn=0021-8944&rft.eissn=1573-8620&rft_id=info:doi/10.1134/S0021894414010210&rft_dat=%3Cproquest_cross%3E1520967306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520967306&rft_id=info:pmid/&rfr_iscdi=true