Impact properties and rheological behavior of exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites

Exfoliated graphite nanoplatelets (xGnP)-filled impact modified polypropylene (IMPP) composites were prepared at 2, 4, 6, and 8 wt% xGnP with and without the addition of a coupling agent and manufactured using melt mixing followed by injection molding. The coupling agent used in this study was polyp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2014-03, Vol.16 (3), p.1-11, Article 2307
Hauptverfasser: Duguay, Alex J., Kiziltas, Alper, Nader, Jacques W., Gardner, Douglas J., Dagher, Habib J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 3
container_start_page 1
container_title Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology
container_volume 16
creator Duguay, Alex J.
Kiziltas, Alper
Nader, Jacques W.
Gardner, Douglas J.
Dagher, Habib J.
description Exfoliated graphite nanoplatelets (xGnP)-filled impact modified polypropylene (IMPP) composites were prepared at 2, 4, 6, and 8 wt% xGnP with and without the addition of a coupling agent and manufactured using melt mixing followed by injection molding. The coupling agent used in this study was polypropylene-graft-maleic anhydride. The nanoparticles used were xGnP with three different sizes: xGnP 5 has an average thickness of 10 nm, and an average platelet diameter of 5 μm, whereas xGnP 15 and xGnP 25 have the same thickness but average diameters are 15 and 25 μm, respectively. Test results show that nanocomposites with smaller xGnP diameter exhibited better impact properties for both neat and compatibilized composites. However, unnotched and notched impact strengths as well as fracture initiation resistance were dramatically deteriorated with the introduction of xGnP. Explanation of this brittle behavior in a nanoplatelet-filled IMPP is presented using melt flow index and transmission electron microscopy.
doi_str_mv 10.1007/s11051-014-2307-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520965017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3246831411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-66bfb118951d38d8bb12c867abea8fa699941a1be10d28025e802d4bf8ac1dea3</originalsourceid><addsrcrecordid>eNp1kUGL1TAUhYsoOI7-AHcFEdxkzE3bNFnK4OjAgBsFd-E2vXkvQ9rUpE98W3-5KR1EBtwkubnfObnkVNVr4FfAef8-A_AOGIeWiYb3rH1SXUDXC6a0_P60nBulGO9l-7x6kfM95yCFFhfV79tpQbvWS4oLpdVTrnEe63SkGOLBWwz1QEf86WOqo6vpl4vB40pjfUi4HP1K9YxzXEK5C7Qy50MoTb-7TnH0zpd6ieG8PXEONO8KG6cl5qLPL6tnDkOmVw_7ZfXt5uPX68_s7sun2-sPd8w2vV6ZlIMbAJTuYGzUqIYBhFWyx4FQOZRa6xYQBgI-CsVFR2UZ28EptDASNpfVu923DPLjRHk1k8-WQsCZ4ikb6ATXsuPQF_TNI_Q-ntJcpisU7zvZaL5RsFM2xZwTObMkP2E6G-BmS8XsqZiSitlSMW3RvH1wxlw-1yWcrc9_hUI1jQDYOLFzubTmA6V_Jviv-R9Bb6AB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507563907</pqid></control><display><type>article</type><title>Impact properties and rheological behavior of exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites</title><source>Springer Nature - Complete Springer Journals</source><creator>Duguay, Alex J. ; Kiziltas, Alper ; Nader, Jacques W. ; Gardner, Douglas J. ; Dagher, Habib J.</creator><creatorcontrib>Duguay, Alex J. ; Kiziltas, Alper ; Nader, Jacques W. ; Gardner, Douglas J. ; Dagher, Habib J.</creatorcontrib><description>Exfoliated graphite nanoplatelets (xGnP)-filled impact modified polypropylene (IMPP) composites were prepared at 2, 4, 6, and 8 wt% xGnP with and without the addition of a coupling agent and manufactured using melt mixing followed by injection molding. The coupling agent used in this study was polypropylene-graft-maleic anhydride. The nanoparticles used were xGnP with three different sizes: xGnP 5 has an average thickness of 10 nm, and an average platelet diameter of 5 μm, whereas xGnP 15 and xGnP 25 have the same thickness but average diameters are 15 and 25 μm, respectively. Test results show that nanocomposites with smaller xGnP diameter exhibited better impact properties for both neat and compatibilized composites. However, unnotched and notched impact strengths as well as fracture initiation resistance were dramatically deteriorated with the introduction of xGnP. Explanation of this brittle behavior in a nanoplatelet-filled IMPP is presented using melt flow index and transmission electron microscopy.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-014-2307-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anhydrides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coupling agents ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Exfoliation ; Flow index ; Fullerenes and related materials; diamonds, graphite ; Graphite ; Injection molding ; Inorganic Chemistry ; Lasers ; Materials Science ; Nanocomposites ; Nanocrystalline materials ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanotechnology ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Physics ; Polypropylenes ; Research Paper ; Specific materials</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2014-03, Vol.16 (3), p.1-11, Article 2307</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>2015 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-66bfb118951d38d8bb12c867abea8fa699941a1be10d28025e802d4bf8ac1dea3</citedby><cites>FETCH-LOGICAL-c379t-66bfb118951d38d8bb12c867abea8fa699941a1be10d28025e802d4bf8ac1dea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-014-2307-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-014-2307-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28332114$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Duguay, Alex J.</creatorcontrib><creatorcontrib>Kiziltas, Alper</creatorcontrib><creatorcontrib>Nader, Jacques W.</creatorcontrib><creatorcontrib>Gardner, Douglas J.</creatorcontrib><creatorcontrib>Dagher, Habib J.</creatorcontrib><title>Impact properties and rheological behavior of exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>Exfoliated graphite nanoplatelets (xGnP)-filled impact modified polypropylene (IMPP) composites were prepared at 2, 4, 6, and 8 wt% xGnP with and without the addition of a coupling agent and manufactured using melt mixing followed by injection molding. The coupling agent used in this study was polypropylene-graft-maleic anhydride. The nanoparticles used were xGnP with three different sizes: xGnP 5 has an average thickness of 10 nm, and an average platelet diameter of 5 μm, whereas xGnP 15 and xGnP 25 have the same thickness but average diameters are 15 and 25 μm, respectively. Test results show that nanocomposites with smaller xGnP diameter exhibited better impact properties for both neat and compatibilized composites. However, unnotched and notched impact strengths as well as fracture initiation resistance were dramatically deteriorated with the introduction of xGnP. Explanation of this brittle behavior in a nanoplatelet-filled IMPP is presented using melt flow index and transmission electron microscopy.</description><subject>Anhydrides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coupling agents</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Exfoliation</subject><subject>Flow index</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphite</subject><subject>Injection molding</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanocrystalline materials</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Polypropylenes</subject><subject>Research Paper</subject><subject>Specific materials</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kUGL1TAUhYsoOI7-AHcFEdxkzE3bNFnK4OjAgBsFd-E2vXkvQ9rUpE98W3-5KR1EBtwkubnfObnkVNVr4FfAef8-A_AOGIeWiYb3rH1SXUDXC6a0_P60nBulGO9l-7x6kfM95yCFFhfV79tpQbvWS4oLpdVTrnEe63SkGOLBWwz1QEf86WOqo6vpl4vB40pjfUi4HP1K9YxzXEK5C7Qy50MoTb-7TnH0zpd6ieG8PXEONO8KG6cl5qLPL6tnDkOmVw_7ZfXt5uPX68_s7sun2-sPd8w2vV6ZlIMbAJTuYGzUqIYBhFWyx4FQOZRa6xYQBgI-CsVFR2UZ28EptDASNpfVu923DPLjRHk1k8-WQsCZ4ikb6ATXsuPQF_TNI_Q-ntJcpisU7zvZaL5RsFM2xZwTObMkP2E6G-BmS8XsqZiSitlSMW3RvH1wxlw-1yWcrc9_hUI1jQDYOLFzubTmA6V_Jviv-R9Bb6AB</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Duguay, Alex J.</creator><creator>Kiziltas, Alper</creator><creator>Nader, Jacques W.</creator><creator>Gardner, Douglas J.</creator><creator>Dagher, Habib J.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20140301</creationdate><title>Impact properties and rheological behavior of exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites</title><author>Duguay, Alex J. ; Kiziltas, Alper ; Nader, Jacques W. ; Gardner, Douglas J. ; Dagher, Habib J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-66bfb118951d38d8bb12c867abea8fa699941a1be10d28025e802d4bf8ac1dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anhydrides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coupling agents</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Exfoliation</topic><topic>Flow index</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphite</topic><topic>Injection molding</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanocrystalline materials</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Polypropylenes</topic><topic>Research Paper</topic><topic>Specific materials</topic><toplevel>online_resources</toplevel><creatorcontrib>Duguay, Alex J.</creatorcontrib><creatorcontrib>Kiziltas, Alper</creatorcontrib><creatorcontrib>Nader, Jacques W.</creatorcontrib><creatorcontrib>Gardner, Douglas J.</creatorcontrib><creatorcontrib>Dagher, Habib J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duguay, Alex J.</au><au>Kiziltas, Alper</au><au>Nader, Jacques W.</au><au>Gardner, Douglas J.</au><au>Dagher, Habib J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact properties and rheological behavior of exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>16</volume><issue>3</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>2307</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>Exfoliated graphite nanoplatelets (xGnP)-filled impact modified polypropylene (IMPP) composites were prepared at 2, 4, 6, and 8 wt% xGnP with and without the addition of a coupling agent and manufactured using melt mixing followed by injection molding. The coupling agent used in this study was polypropylene-graft-maleic anhydride. The nanoparticles used were xGnP with three different sizes: xGnP 5 has an average thickness of 10 nm, and an average platelet diameter of 5 μm, whereas xGnP 15 and xGnP 25 have the same thickness but average diameters are 15 and 25 μm, respectively. Test results show that nanocomposites with smaller xGnP diameter exhibited better impact properties for both neat and compatibilized composites. However, unnotched and notched impact strengths as well as fracture initiation resistance were dramatically deteriorated with the introduction of xGnP. Explanation of this brittle behavior in a nanoplatelet-filled IMPP is presented using melt flow index and transmission electron microscopy.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-014-2307-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-0764
ispartof Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2014-03, Vol.16 (3), p.1-11, Article 2307
issn 1388-0764
1572-896X
language eng
recordid cdi_proquest_miscellaneous_1520965017
source Springer Nature - Complete Springer Journals
subjects Anhydrides
Characterization and Evaluation of Materials
Chemistry and Materials Science
Coupling agents
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Exfoliation
Flow index
Fullerenes and related materials
diamonds, graphite
Graphite
Injection molding
Inorganic Chemistry
Lasers
Materials Science
Nanocomposites
Nanocrystalline materials
Nanoparticles
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanotechnology
Optical Devices
Optics
Photonics
Physical Chemistry
Physics
Polypropylenes
Research Paper
Specific materials
title Impact properties and rheological behavior of exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T11%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20properties%20and%20rheological%20behavior%20of%20exfoliated%20graphite%20nanoplatelet-filled%20impact%20modified%20polypropylene%20nanocomposites&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Duguay,%20Alex%20J.&rft.date=2014-03-01&rft.volume=16&rft.issue=3&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=2307&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-014-2307-4&rft_dat=%3Cproquest_cross%3E3246831411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507563907&rft_id=info:pmid/&rfr_iscdi=true