A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering

Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-6
1. Verfasser: Xu, Qingzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 2013
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2013
creator Xu, Qingzhen
description Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning to simulate major U.S. stock market index and uses a nonlinear implicit finite-difference method to find numerical solutions of the two-dimensional simulation model. The proposed machine learning method uses partial differential equations to predict the stock market and can be extensively used to accelerate large-scale data processing on the history database. The experimental results show that the proposed algorithm reduces the prediction error and improves forecasting precision.
doi_str_mv 10.1155/2013/659809
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520955235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3190934911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-30f3200bf3c785d7d19ca90e468d864a74269e7d2eba29069c8d78a91e71e9293</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuBFFKzVk3cJeBFlNR-bTXLUalWoerCCtyVNZmtkm2jSKv33RtaDePE0w_AwMO8UxT7Bp4RwfkYxYWc1VxKrjWJAeM1KTiqxmXtMq5JQ9rxd7KT0ijElnMhBYc_RffiADt1p8-I8oAno6J2fo8dl1EuYr9GFTmBR8Gj6GcpLtwCfXPC6Q_erBURncncXLHQJOY_GzmtvXJ5d-Xnel4Gf7xZbre4S7P3UYfE0vpqObsrJw_Xt6HxSGibVsmS4ZRTjWcuMkNwKS5TRCkNVSyvrSouK1gqEpTDTVOFaGWmF1IqAIKCoYsPiqN_7FsP7CtKyWbhkoOu0h7BKDeEUK84p45ke_qGvYRXzVVlVitSVZEJkddIrE0NKEdrmLbqFjuuG4OY78eY78aZPPOvjXucgrf50_-CDHkMm0OpfOP9KSPYFO1yIRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1491648377</pqid></control><display><type>article</type><title>A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Xu, Qingzhen</creator><contributor>Yang, Gelan</contributor><creatorcontrib>Xu, Qingzhen ; Yang, Gelan</creatorcontrib><description>Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning to simulate major U.S. stock market index and uses a nonlinear implicit finite-difference method to find numerical solutions of the two-dimensional simulation model. The proposed machine learning method uses partial differential equations to predict the stock market and can be extensively used to accelerate large-scale data processing on the history database. The experimental results show that the proposed algorithm reduces the prediction error and improves forecasting precision.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2013/659809</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Computer simulation ; Data processing ; Engineering ; Engineering education ; Finite difference method ; Machine learning ; Markets ; Mathematical models ; Partial differential equations ; Raw materials ; Securities markets ; Small cap investments ; Stock exchanges ; Stock market indexes ; Studies ; Task complexity ; Two dimensional ; Two dimensional models</subject><ispartof>Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-6</ispartof><rights>Copyright © 2013 Qingzhen Xu.</rights><rights>Copyright © 2013 Qingzhen Xu.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-30f3200bf3c785d7d19ca90e468d864a74269e7d2eba29069c8d78a91e71e9293</citedby><cites>FETCH-LOGICAL-c389t-30f3200bf3c785d7d19ca90e468d864a74269e7d2eba29069c8d78a91e71e9293</cites><orcidid>0000-0001-6687-8367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Yang, Gelan</contributor><creatorcontrib>Xu, Qingzhen</creatorcontrib><title>A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering</title><title>Mathematical problems in engineering</title><description>Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning to simulate major U.S. stock market index and uses a nonlinear implicit finite-difference method to find numerical solutions of the two-dimensional simulation model. The proposed machine learning method uses partial differential equations to predict the stock market and can be extensively used to accelerate large-scale data processing on the history database. The experimental results show that the proposed algorithm reduces the prediction error and improves forecasting precision.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Engineering</subject><subject>Engineering education</subject><subject>Finite difference method</subject><subject>Machine learning</subject><subject>Markets</subject><subject>Mathematical models</subject><subject>Partial differential equations</subject><subject>Raw materials</subject><subject>Securities markets</subject><subject>Small cap investments</subject><subject>Stock exchanges</subject><subject>Stock market indexes</subject><subject>Studies</subject><subject>Task complexity</subject><subject>Two dimensional</subject><subject>Two dimensional models</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U1LAzEQBuBFFKzVk3cJeBFlNR-bTXLUalWoerCCtyVNZmtkm2jSKv33RtaDePE0w_AwMO8UxT7Bp4RwfkYxYWc1VxKrjWJAeM1KTiqxmXtMq5JQ9rxd7KT0ijElnMhBYc_RffiADt1p8-I8oAno6J2fo8dl1EuYr9GFTmBR8Gj6GcpLtwCfXPC6Q_erBURncncXLHQJOY_GzmtvXJ5d-Xnel4Gf7xZbre4S7P3UYfE0vpqObsrJw_Xt6HxSGibVsmS4ZRTjWcuMkNwKS5TRCkNVSyvrSouK1gqEpTDTVOFaGWmF1IqAIKCoYsPiqN_7FsP7CtKyWbhkoOu0h7BKDeEUK84p45ke_qGvYRXzVVlVitSVZEJkddIrE0NKEdrmLbqFjuuG4OY78eY78aZPPOvjXucgrf50_-CDHkMm0OpfOP9KSPYFO1yIRA</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Xu, Qingzhen</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6687-8367</orcidid></search><sort><creationdate>20130101</creationdate><title>A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering</title><author>Xu, Qingzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-30f3200bf3c785d7d19ca90e468d864a74269e7d2eba29069c8d78a91e71e9293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Engineering</topic><topic>Engineering education</topic><topic>Finite difference method</topic><topic>Machine learning</topic><topic>Markets</topic><topic>Mathematical models</topic><topic>Partial differential equations</topic><topic>Raw materials</topic><topic>Securities markets</topic><topic>Small cap investments</topic><topic>Stock exchanges</topic><topic>Stock market indexes</topic><topic>Studies</topic><topic>Task complexity</topic><topic>Two dimensional</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Qingzhen</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Qingzhen</au><au>Yang, Gelan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning to simulate major U.S. stock market index and uses a nonlinear implicit finite-difference method to find numerical solutions of the two-dimensional simulation model. The proposed machine learning method uses partial differential equations to predict the stock market and can be extensively used to accelerate large-scale data processing on the history database. The experimental results show that the proposed algorithm reduces the prediction error and improves forecasting precision.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/659809</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6687-8367</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-6
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1520955235
source Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Computer simulation
Data processing
Engineering
Engineering education
Finite difference method
Machine learning
Markets
Mathematical models
Partial differential equations
Raw materials
Securities markets
Small cap investments
Stock exchanges
Stock market indexes
Studies
Task complexity
Two dimensional
Two dimensional models
title A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Machine%20Learning%20Strategy%20Based%20on%20Two-Dimensional%20Numerical%20Models%20in%20Financial%20Engineering&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Xu,%20Qingzhen&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2013/659809&rft_dat=%3Cproquest_cross%3E3190934911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1491648377&rft_id=info:pmid/&rfr_iscdi=true