A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering
Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-6 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 2013 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2013 |
creator | Xu, Qingzhen |
description | Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning to simulate major U.S. stock market index and uses a nonlinear implicit finite-difference method to find numerical solutions of the two-dimensional simulation model. The proposed machine learning method uses partial differential equations to predict the stock market and can be extensively used to accelerate large-scale data processing on the history database. The experimental results show that the proposed algorithm reduces the prediction error and improves forecasting precision. |
doi_str_mv | 10.1155/2013/659809 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520955235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3190934911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-30f3200bf3c785d7d19ca90e468d864a74269e7d2eba29069c8d78a91e71e9293</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuBFFKzVk3cJeBFlNR-bTXLUalWoerCCtyVNZmtkm2jSKv33RtaDePE0w_AwMO8UxT7Bp4RwfkYxYWc1VxKrjWJAeM1KTiqxmXtMq5JQ9rxd7KT0ijElnMhBYc_RffiADt1p8-I8oAno6J2fo8dl1EuYr9GFTmBR8Gj6GcpLtwCfXPC6Q_erBURncncXLHQJOY_GzmtvXJ5d-Xnel4Gf7xZbre4S7P3UYfE0vpqObsrJw_Xt6HxSGibVsmS4ZRTjWcuMkNwKS5TRCkNVSyvrSouK1gqEpTDTVOFaGWmF1IqAIKCoYsPiqN_7FsP7CtKyWbhkoOu0h7BKDeEUK84p45ke_qGvYRXzVVlVitSVZEJkddIrE0NKEdrmLbqFjuuG4OY78eY78aZPPOvjXucgrf50_-CDHkMm0OpfOP9KSPYFO1yIRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1491648377</pqid></control><display><type>article</type><title>A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Xu, Qingzhen</creator><contributor>Yang, Gelan</contributor><creatorcontrib>Xu, Qingzhen ; Yang, Gelan</creatorcontrib><description>Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning to simulate major U.S. stock market index and uses a nonlinear implicit finite-difference method to find numerical solutions of the two-dimensional simulation model. The proposed machine learning method uses partial differential equations to predict the stock market and can be extensively used to accelerate large-scale data processing on the history database. The experimental results show that the proposed algorithm reduces the prediction error and improves forecasting precision.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2013/659809</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Computer simulation ; Data processing ; Engineering ; Engineering education ; Finite difference method ; Machine learning ; Markets ; Mathematical models ; Partial differential equations ; Raw materials ; Securities markets ; Small cap investments ; Stock exchanges ; Stock market indexes ; Studies ; Task complexity ; Two dimensional ; Two dimensional models</subject><ispartof>Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-6</ispartof><rights>Copyright © 2013 Qingzhen Xu.</rights><rights>Copyright © 2013 Qingzhen Xu.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-30f3200bf3c785d7d19ca90e468d864a74269e7d2eba29069c8d78a91e71e9293</citedby><cites>FETCH-LOGICAL-c389t-30f3200bf3c785d7d19ca90e468d864a74269e7d2eba29069c8d78a91e71e9293</cites><orcidid>0000-0001-6687-8367</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Yang, Gelan</contributor><creatorcontrib>Xu, Qingzhen</creatorcontrib><title>A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering</title><title>Mathematical problems in engineering</title><description>Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning to simulate major U.S. stock market index and uses a nonlinear implicit finite-difference method to find numerical solutions of the two-dimensional simulation model. The proposed machine learning method uses partial differential equations to predict the stock market and can be extensively used to accelerate large-scale data processing on the history database. The experimental results show that the proposed algorithm reduces the prediction error and improves forecasting precision.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Engineering</subject><subject>Engineering education</subject><subject>Finite difference method</subject><subject>Machine learning</subject><subject>Markets</subject><subject>Mathematical models</subject><subject>Partial differential equations</subject><subject>Raw materials</subject><subject>Securities markets</subject><subject>Small cap investments</subject><subject>Stock exchanges</subject><subject>Stock market indexes</subject><subject>Studies</subject><subject>Task complexity</subject><subject>Two dimensional</subject><subject>Two dimensional models</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U1LAzEQBuBFFKzVk3cJeBFlNR-bTXLUalWoerCCtyVNZmtkm2jSKv33RtaDePE0w_AwMO8UxT7Bp4RwfkYxYWc1VxKrjWJAeM1KTiqxmXtMq5JQ9rxd7KT0ijElnMhBYc_RffiADt1p8-I8oAno6J2fo8dl1EuYr9GFTmBR8Gj6GcpLtwCfXPC6Q_erBURncncXLHQJOY_GzmtvXJ5d-Xnel4Gf7xZbre4S7P3UYfE0vpqObsrJw_Xt6HxSGibVsmS4ZRTjWcuMkNwKS5TRCkNVSyvrSouK1gqEpTDTVOFaGWmF1IqAIKCoYsPiqN_7FsP7CtKyWbhkoOu0h7BKDeEUK84p45ke_qGvYRXzVVlVitSVZEJkddIrE0NKEdrmLbqFjuuG4OY78eY78aZPPOvjXucgrf50_-CDHkMm0OpfOP9KSPYFO1yIRA</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Xu, Qingzhen</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6687-8367</orcidid></search><sort><creationdate>20130101</creationdate><title>A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering</title><author>Xu, Qingzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-30f3200bf3c785d7d19ca90e468d864a74269e7d2eba29069c8d78a91e71e9293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Engineering</topic><topic>Engineering education</topic><topic>Finite difference method</topic><topic>Machine learning</topic><topic>Markets</topic><topic>Mathematical models</topic><topic>Partial differential equations</topic><topic>Raw materials</topic><topic>Securities markets</topic><topic>Small cap investments</topic><topic>Stock exchanges</topic><topic>Stock market indexes</topic><topic>Studies</topic><topic>Task complexity</topic><topic>Two dimensional</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Qingzhen</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Qingzhen</au><au>Yang, Gelan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Machine learning is the most commonly used technique to address larger and more complex tasks by analyzing the most relevant information already present in databases. In order to better predict the future trend of the index, this paper proposes a two-dimensional numerical model for machine learning to simulate major U.S. stock market index and uses a nonlinear implicit finite-difference method to find numerical solutions of the two-dimensional simulation model. The proposed machine learning method uses partial differential equations to predict the stock market and can be extensively used to accelerate large-scale data processing on the history database. The experimental results show that the proposed algorithm reduces the prediction error and improves forecasting precision.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/659809</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6687-8367</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-6 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520955235 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Computer simulation Data processing Engineering Engineering education Finite difference method Machine learning Markets Mathematical models Partial differential equations Raw materials Securities markets Small cap investments Stock exchanges Stock market indexes Studies Task complexity Two dimensional Two dimensional models |
title | A Novel Machine Learning Strategy Based on Two-Dimensional Numerical Models in Financial Engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Machine%20Learning%20Strategy%20Based%20on%20Two-Dimensional%20Numerical%20Models%20in%20Financial%20Engineering&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Xu,%20Qingzhen&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2013/659809&rft_dat=%3Cproquest_cross%3E3190934911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1491648377&rft_id=info:pmid/&rfr_iscdi=true |