LMI-based gain scheduling for bridge flutter control using eccentric rotational actuators
SUMMARY Long‐span bridge girders can show dangerous instable flutter vibrations caused by aerodynamic forces due to very strong winds. The control objective of flutter control is to enhance the structure‐dependent and control‐dependent critical wind speed of flutter onset. An active mass damper syst...
Gespeichert in:
Veröffentlicht in: | Optimal control applications & methods 2012-07, Vol.33 (4), p.488-500 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 500 |
---|---|
container_issue | 4 |
container_start_page | 488 |
container_title | Optimal control applications & methods |
container_volume | 33 |
creator | Körlin, Rüdiger Boonto, Sudchai Werner, Herbert Starossek, Uwe |
description | SUMMARY
Long‐span bridge girders can show dangerous instable flutter vibrations caused by aerodynamic forces due to very strong winds. The control objective of flutter control is to enhance the structure‐dependent and control‐dependent critical wind speed of flutter onset. An active mass damper system with two eccentric rotational actuators (ERA) is presented for flutter control. By using a bridge girder model that moves in two degrees of freedom (DOFs) and is subjected to wind, the equations of motion of the controlled structure equipped with ERA are established. For determination of critical wind speed, a flutter analysis is carried out with the help of a numerical simulation scheme. Considering the plant without the aerodynamic forces and neglecting the interaction effects between the two ERA, the simplified control problem of one ERA is affine to the translational oscillator and rotational actuator (TORA) benchmark problem. LMI‐based gain scheduling technique has been used successfully for the TORA and is implemented for flutter control with ERA in this research. For an example, the performance of the controlled bridge girder is investigated. Copyright © 2011 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/oca.1010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520952588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3214978771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3980-d81781ccb4bc21e411ab34cdb4918f7125a6588dcd8759334ffd2c1c220760293</originalsourceid><addsrcrecordid>eNp10E1LJDEQBuAgCo4f4E8IePHSmkq6J8lRxl0_GBVBEb2EdHV6jNt23CSN-u_tQXFxwVNVwcNL8RKyA2wfGOMHAe24AFshE2BaF1BBuUomDEpRcKbkOtlI6ZExJkHwCbmbn58WtU2uoQvre5rwwTVD5_sFbUOkdfTNwtG2G3J2kWLocwwdHdISOEQ33h5pDNlmH3rbUYt5sDnEtEXWWtslt_05N8nN71_Xs5Nifnl8OjucFyi0YkWjQCpArMsaObgSwNaixKYuNahWAq_stFKqwUbJSgtRtm3DEZBzJqeMa7FJ9j5yn2P4O7iUzZNP6LrO9i4MyUDFma74mDHS3f_oYxji-PWoSj3VWktQ_wIxhpSia81z9E82vhlgZtmxGTs2y45HWnzQF9-5tx-duZwdfvc-Zff65W38Y6ZSyMrcXhybM6FmV0fXlbkX7_mli04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496999718</pqid></control><display><type>article</type><title>LMI-based gain scheduling for bridge flutter control using eccentric rotational actuators</title><source>Wiley Online Library All Journals</source><creator>Körlin, Rüdiger ; Boonto, Sudchai ; Werner, Herbert ; Starossek, Uwe</creator><creatorcontrib>Körlin, Rüdiger ; Boonto, Sudchai ; Werner, Herbert ; Starossek, Uwe</creatorcontrib><description>SUMMARY
Long‐span bridge girders can show dangerous instable flutter vibrations caused by aerodynamic forces due to very strong winds. The control objective of flutter control is to enhance the structure‐dependent and control‐dependent critical wind speed of flutter onset. An active mass damper system with two eccentric rotational actuators (ERA) is presented for flutter control. By using a bridge girder model that moves in two degrees of freedom (DOFs) and is subjected to wind, the equations of motion of the controlled structure equipped with ERA are established. For determination of critical wind speed, a flutter analysis is carried out with the help of a numerical simulation scheme. Considering the plant without the aerodynamic forces and neglecting the interaction effects between the two ERA, the simplified control problem of one ERA is affine to the translational oscillator and rotational actuator (TORA) benchmark problem. LMI‐based gain scheduling technique has been used successfully for the TORA and is implemented for flutter control with ERA in this research. For an example, the performance of the controlled bridge girder is investigated. Copyright © 2011 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.1010</identifier><identifier>CODEN: OCAMD5</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>active mass damper ; Actuators ; bridge ; Bridges (structures) ; eccentric rotational actuator ; Eccentrics ; Flutter ; Gain scheduling ; Girders ; Rotational ; Vibration ; vibration control</subject><ispartof>Optimal control applications & methods, 2012-07, Vol.33 (4), p.488-500</ispartof><rights>Copyright © 2011 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3980-d81781ccb4bc21e411ab34cdb4918f7125a6588dcd8759334ffd2c1c220760293</citedby><cites>FETCH-LOGICAL-c3980-d81781ccb4bc21e411ab34cdb4918f7125a6588dcd8759334ffd2c1c220760293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.1010$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.1010$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Körlin, Rüdiger</creatorcontrib><creatorcontrib>Boonto, Sudchai</creatorcontrib><creatorcontrib>Werner, Herbert</creatorcontrib><creatorcontrib>Starossek, Uwe</creatorcontrib><title>LMI-based gain scheduling for bridge flutter control using eccentric rotational actuators</title><title>Optimal control applications & methods</title><addtitle>Optim. Control Appl. Meth</addtitle><description>SUMMARY
Long‐span bridge girders can show dangerous instable flutter vibrations caused by aerodynamic forces due to very strong winds. The control objective of flutter control is to enhance the structure‐dependent and control‐dependent critical wind speed of flutter onset. An active mass damper system with two eccentric rotational actuators (ERA) is presented for flutter control. By using a bridge girder model that moves in two degrees of freedom (DOFs) and is subjected to wind, the equations of motion of the controlled structure equipped with ERA are established. For determination of critical wind speed, a flutter analysis is carried out with the help of a numerical simulation scheme. Considering the plant without the aerodynamic forces and neglecting the interaction effects between the two ERA, the simplified control problem of one ERA is affine to the translational oscillator and rotational actuator (TORA) benchmark problem. LMI‐based gain scheduling technique has been used successfully for the TORA and is implemented for flutter control with ERA in this research. For an example, the performance of the controlled bridge girder is investigated. Copyright © 2011 John Wiley & Sons, Ltd.</description><subject>active mass damper</subject><subject>Actuators</subject><subject>bridge</subject><subject>Bridges (structures)</subject><subject>eccentric rotational actuator</subject><subject>Eccentrics</subject><subject>Flutter</subject><subject>Gain scheduling</subject><subject>Girders</subject><subject>Rotational</subject><subject>Vibration</subject><subject>vibration control</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp10E1LJDEQBuAgCo4f4E8IePHSmkq6J8lRxl0_GBVBEb2EdHV6jNt23CSN-u_tQXFxwVNVwcNL8RKyA2wfGOMHAe24AFshE2BaF1BBuUomDEpRcKbkOtlI6ZExJkHwCbmbn58WtU2uoQvre5rwwTVD5_sFbUOkdfTNwtG2G3J2kWLocwwdHdISOEQ33h5pDNlmH3rbUYt5sDnEtEXWWtslt_05N8nN71_Xs5Nifnl8OjucFyi0YkWjQCpArMsaObgSwNaixKYuNahWAq_stFKqwUbJSgtRtm3DEZBzJqeMa7FJ9j5yn2P4O7iUzZNP6LrO9i4MyUDFma74mDHS3f_oYxji-PWoSj3VWktQ_wIxhpSia81z9E82vhlgZtmxGTs2y45HWnzQF9-5tx-duZwdfvc-Zff65W38Y6ZSyMrcXhybM6FmV0fXlbkX7_mli04</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Körlin, Rüdiger</creator><creator>Boonto, Sudchai</creator><creator>Werner, Herbert</creator><creator>Starossek, Uwe</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>201207</creationdate><title>LMI-based gain scheduling for bridge flutter control using eccentric rotational actuators</title><author>Körlin, Rüdiger ; Boonto, Sudchai ; Werner, Herbert ; Starossek, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3980-d81781ccb4bc21e411ab34cdb4918f7125a6588dcd8759334ffd2c1c220760293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>active mass damper</topic><topic>Actuators</topic><topic>bridge</topic><topic>Bridges (structures)</topic><topic>eccentric rotational actuator</topic><topic>Eccentrics</topic><topic>Flutter</topic><topic>Gain scheduling</topic><topic>Girders</topic><topic>Rotational</topic><topic>Vibration</topic><topic>vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Körlin, Rüdiger</creatorcontrib><creatorcontrib>Boonto, Sudchai</creatorcontrib><creatorcontrib>Werner, Herbert</creatorcontrib><creatorcontrib>Starossek, Uwe</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications & methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Körlin, Rüdiger</au><au>Boonto, Sudchai</au><au>Werner, Herbert</au><au>Starossek, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LMI-based gain scheduling for bridge flutter control using eccentric rotational actuators</atitle><jtitle>Optimal control applications & methods</jtitle><addtitle>Optim. Control Appl. Meth</addtitle><date>2012-07</date><risdate>2012</risdate><volume>33</volume><issue>4</issue><spage>488</spage><epage>500</epage><pages>488-500</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><coden>OCAMD5</coden><abstract>SUMMARY
Long‐span bridge girders can show dangerous instable flutter vibrations caused by aerodynamic forces due to very strong winds. The control objective of flutter control is to enhance the structure‐dependent and control‐dependent critical wind speed of flutter onset. An active mass damper system with two eccentric rotational actuators (ERA) is presented for flutter control. By using a bridge girder model that moves in two degrees of freedom (DOFs) and is subjected to wind, the equations of motion of the controlled structure equipped with ERA are established. For determination of critical wind speed, a flutter analysis is carried out with the help of a numerical simulation scheme. Considering the plant without the aerodynamic forces and neglecting the interaction effects between the two ERA, the simplified control problem of one ERA is affine to the translational oscillator and rotational actuator (TORA) benchmark problem. LMI‐based gain scheduling technique has been used successfully for the TORA and is implemented for flutter control with ERA in this research. For an example, the performance of the controlled bridge girder is investigated. Copyright © 2011 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/oca.1010</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-2087 |
ispartof | Optimal control applications & methods, 2012-07, Vol.33 (4), p.488-500 |
issn | 0143-2087 1099-1514 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520952588 |
source | Wiley Online Library All Journals |
subjects | active mass damper Actuators bridge Bridges (structures) eccentric rotational actuator Eccentrics Flutter Gain scheduling Girders Rotational Vibration vibration control |
title | LMI-based gain scheduling for bridge flutter control using eccentric rotational actuators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LMI-based%20gain%20scheduling%20for%20bridge%20flutter%20control%20using%20eccentric%20rotational%20actuators&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=K%C3%B6rlin,%20R%C3%BCdiger&rft.date=2012-07&rft.volume=33&rft.issue=4&rft.spage=488&rft.epage=500&rft.pages=488-500&rft.issn=0143-2087&rft.eissn=1099-1514&rft.coden=OCAMD5&rft_id=info:doi/10.1002/oca.1010&rft_dat=%3Cproquest_cross%3E3214978771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1496999718&rft_id=info:pmid/&rfr_iscdi=true |