LMI-based gain scheduling for bridge flutter control using eccentric rotational actuators

SUMMARY Long‐span bridge girders can show dangerous instable flutter vibrations caused by aerodynamic forces due to very strong winds. The control objective of flutter control is to enhance the structure‐dependent and control‐dependent critical wind speed of flutter onset. An active mass damper syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods 2012-07, Vol.33 (4), p.488-500
Hauptverfasser: Körlin, Rüdiger, Boonto, Sudchai, Werner, Herbert, Starossek, Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 500
container_issue 4
container_start_page 488
container_title Optimal control applications & methods
container_volume 33
creator Körlin, Rüdiger
Boonto, Sudchai
Werner, Herbert
Starossek, Uwe
description SUMMARY Long‐span bridge girders can show dangerous instable flutter vibrations caused by aerodynamic forces due to very strong winds. The control objective of flutter control is to enhance the structure‐dependent and control‐dependent critical wind speed of flutter onset. An active mass damper system with two eccentric rotational actuators (ERA) is presented for flutter control. By using a bridge girder model that moves in two degrees of freedom (DOFs) and is subjected to wind, the equations of motion of the controlled structure equipped with ERA are established. For determination of critical wind speed, a flutter analysis is carried out with the help of a numerical simulation scheme. Considering the plant without the aerodynamic forces and neglecting the interaction effects between the two ERA, the simplified control problem of one ERA is affine to the translational oscillator and rotational actuator (TORA) benchmark problem. LMI‐based gain scheduling technique has been used successfully for the TORA and is implemented for flutter control with ERA in this research. For an example, the performance of the controlled bridge girder is investigated. Copyright © 2011 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/oca.1010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520952588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3214978771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3980-d81781ccb4bc21e411ab34cdb4918f7125a6588dcd8759334ffd2c1c220760293</originalsourceid><addsrcrecordid>eNp10E1LJDEQBuAgCo4f4E8IePHSmkq6J8lRxl0_GBVBEb2EdHV6jNt23CSN-u_tQXFxwVNVwcNL8RKyA2wfGOMHAe24AFshE2BaF1BBuUomDEpRcKbkOtlI6ZExJkHwCbmbn58WtU2uoQvre5rwwTVD5_sFbUOkdfTNwtG2G3J2kWLocwwdHdISOEQ33h5pDNlmH3rbUYt5sDnEtEXWWtslt_05N8nN71_Xs5Nifnl8OjucFyi0YkWjQCpArMsaObgSwNaixKYuNahWAq_stFKqwUbJSgtRtm3DEZBzJqeMa7FJ9j5yn2P4O7iUzZNP6LrO9i4MyUDFma74mDHS3f_oYxji-PWoSj3VWktQ_wIxhpSia81z9E82vhlgZtmxGTs2y45HWnzQF9-5tx-duZwdfvc-Zff65W38Y6ZSyMrcXhybM6FmV0fXlbkX7_mli04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496999718</pqid></control><display><type>article</type><title>LMI-based gain scheduling for bridge flutter control using eccentric rotational actuators</title><source>Wiley Online Library All Journals</source><creator>Körlin, Rüdiger ; Boonto, Sudchai ; Werner, Herbert ; Starossek, Uwe</creator><creatorcontrib>Körlin, Rüdiger ; Boonto, Sudchai ; Werner, Herbert ; Starossek, Uwe</creatorcontrib><description>SUMMARY Long‐span bridge girders can show dangerous instable flutter vibrations caused by aerodynamic forces due to very strong winds. The control objective of flutter control is to enhance the structure‐dependent and control‐dependent critical wind speed of flutter onset. An active mass damper system with two eccentric rotational actuators (ERA) is presented for flutter control. By using a bridge girder model that moves in two degrees of freedom (DOFs) and is subjected to wind, the equations of motion of the controlled structure equipped with ERA are established. For determination of critical wind speed, a flutter analysis is carried out with the help of a numerical simulation scheme. Considering the plant without the aerodynamic forces and neglecting the interaction effects between the two ERA, the simplified control problem of one ERA is affine to the translational oscillator and rotational actuator (TORA) benchmark problem. LMI‐based gain scheduling technique has been used successfully for the TORA and is implemented for flutter control with ERA in this research. For an example, the performance of the controlled bridge girder is investigated. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.1010</identifier><identifier>CODEN: OCAMD5</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>active mass damper ; Actuators ; bridge ; Bridges (structures) ; eccentric rotational actuator ; Eccentrics ; Flutter ; Gain scheduling ; Girders ; Rotational ; Vibration ; vibration control</subject><ispartof>Optimal control applications &amp; methods, 2012-07, Vol.33 (4), p.488-500</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3980-d81781ccb4bc21e411ab34cdb4918f7125a6588dcd8759334ffd2c1c220760293</citedby><cites>FETCH-LOGICAL-c3980-d81781ccb4bc21e411ab34cdb4918f7125a6588dcd8759334ffd2c1c220760293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.1010$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.1010$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Körlin, Rüdiger</creatorcontrib><creatorcontrib>Boonto, Sudchai</creatorcontrib><creatorcontrib>Werner, Herbert</creatorcontrib><creatorcontrib>Starossek, Uwe</creatorcontrib><title>LMI-based gain scheduling for bridge flutter control using eccentric rotational actuators</title><title>Optimal control applications &amp; methods</title><addtitle>Optim. Control Appl. Meth</addtitle><description>SUMMARY Long‐span bridge girders can show dangerous instable flutter vibrations caused by aerodynamic forces due to very strong winds. The control objective of flutter control is to enhance the structure‐dependent and control‐dependent critical wind speed of flutter onset. An active mass damper system with two eccentric rotational actuators (ERA) is presented for flutter control. By using a bridge girder model that moves in two degrees of freedom (DOFs) and is subjected to wind, the equations of motion of the controlled structure equipped with ERA are established. For determination of critical wind speed, a flutter analysis is carried out with the help of a numerical simulation scheme. Considering the plant without the aerodynamic forces and neglecting the interaction effects between the two ERA, the simplified control problem of one ERA is affine to the translational oscillator and rotational actuator (TORA) benchmark problem. LMI‐based gain scheduling technique has been used successfully for the TORA and is implemented for flutter control with ERA in this research. For an example, the performance of the controlled bridge girder is investigated. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><subject>active mass damper</subject><subject>Actuators</subject><subject>bridge</subject><subject>Bridges (structures)</subject><subject>eccentric rotational actuator</subject><subject>Eccentrics</subject><subject>Flutter</subject><subject>Gain scheduling</subject><subject>Girders</subject><subject>Rotational</subject><subject>Vibration</subject><subject>vibration control</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp10E1LJDEQBuAgCo4f4E8IePHSmkq6J8lRxl0_GBVBEb2EdHV6jNt23CSN-u_tQXFxwVNVwcNL8RKyA2wfGOMHAe24AFshE2BaF1BBuUomDEpRcKbkOtlI6ZExJkHwCbmbn58WtU2uoQvre5rwwTVD5_sFbUOkdfTNwtG2G3J2kWLocwwdHdISOEQ33h5pDNlmH3rbUYt5sDnEtEXWWtslt_05N8nN71_Xs5Nifnl8OjucFyi0YkWjQCpArMsaObgSwNaixKYuNahWAq_stFKqwUbJSgtRtm3DEZBzJqeMa7FJ9j5yn2P4O7iUzZNP6LrO9i4MyUDFma74mDHS3f_oYxji-PWoSj3VWktQ_wIxhpSia81z9E82vhlgZtmxGTs2y45HWnzQF9-5tx-duZwdfvc-Zff65W38Y6ZSyMrcXhybM6FmV0fXlbkX7_mli04</recordid><startdate>201207</startdate><enddate>201207</enddate><creator>Körlin, Rüdiger</creator><creator>Boonto, Sudchai</creator><creator>Werner, Herbert</creator><creator>Starossek, Uwe</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>201207</creationdate><title>LMI-based gain scheduling for bridge flutter control using eccentric rotational actuators</title><author>Körlin, Rüdiger ; Boonto, Sudchai ; Werner, Herbert ; Starossek, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3980-d81781ccb4bc21e411ab34cdb4918f7125a6588dcd8759334ffd2c1c220760293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>active mass damper</topic><topic>Actuators</topic><topic>bridge</topic><topic>Bridges (structures)</topic><topic>eccentric rotational actuator</topic><topic>Eccentrics</topic><topic>Flutter</topic><topic>Gain scheduling</topic><topic>Girders</topic><topic>Rotational</topic><topic>Vibration</topic><topic>vibration control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Körlin, Rüdiger</creatorcontrib><creatorcontrib>Boonto, Sudchai</creatorcontrib><creatorcontrib>Werner, Herbert</creatorcontrib><creatorcontrib>Starossek, Uwe</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications &amp; methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Körlin, Rüdiger</au><au>Boonto, Sudchai</au><au>Werner, Herbert</au><au>Starossek, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LMI-based gain scheduling for bridge flutter control using eccentric rotational actuators</atitle><jtitle>Optimal control applications &amp; methods</jtitle><addtitle>Optim. Control Appl. Meth</addtitle><date>2012-07</date><risdate>2012</risdate><volume>33</volume><issue>4</issue><spage>488</spage><epage>500</epage><pages>488-500</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><coden>OCAMD5</coden><abstract>SUMMARY Long‐span bridge girders can show dangerous instable flutter vibrations caused by aerodynamic forces due to very strong winds. The control objective of flutter control is to enhance the structure‐dependent and control‐dependent critical wind speed of flutter onset. An active mass damper system with two eccentric rotational actuators (ERA) is presented for flutter control. By using a bridge girder model that moves in two degrees of freedom (DOFs) and is subjected to wind, the equations of motion of the controlled structure equipped with ERA are established. For determination of critical wind speed, a flutter analysis is carried out with the help of a numerical simulation scheme. Considering the plant without the aerodynamic forces and neglecting the interaction effects between the two ERA, the simplified control problem of one ERA is affine to the translational oscillator and rotational actuator (TORA) benchmark problem. LMI‐based gain scheduling technique has been used successfully for the TORA and is implemented for flutter control with ERA in this research. For an example, the performance of the controlled bridge girder is investigated. Copyright © 2011 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/oca.1010</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-2087
ispartof Optimal control applications & methods, 2012-07, Vol.33 (4), p.488-500
issn 0143-2087
1099-1514
language eng
recordid cdi_proquest_miscellaneous_1520952588
source Wiley Online Library All Journals
subjects active mass damper
Actuators
bridge
Bridges (structures)
eccentric rotational actuator
Eccentrics
Flutter
Gain scheduling
Girders
Rotational
Vibration
vibration control
title LMI-based gain scheduling for bridge flutter control using eccentric rotational actuators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LMI-based%20gain%20scheduling%20for%20bridge%20flutter%20control%20using%20eccentric%20rotational%20actuators&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=K%C3%B6rlin,%20R%C3%BCdiger&rft.date=2012-07&rft.volume=33&rft.issue=4&rft.spage=488&rft.epage=500&rft.pages=488-500&rft.issn=0143-2087&rft.eissn=1099-1514&rft.coden=OCAMD5&rft_id=info:doi/10.1002/oca.1010&rft_dat=%3Cproquest_cross%3E3214978771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1496999718&rft_id=info:pmid/&rfr_iscdi=true