Gas Turbine Combined Cycle Dynamic Simulation: A Physics Based Simple Approach
This paper describes a simplified physics-based method derived from fundamental relationships to accurately predict the dynamic response of the steam bottoming cycle of a combined cycle power plant to the changes in gas turbine exhaust temperature and flow rate. The method offers two advantages: (1)...
Gespeichert in:
Veröffentlicht in: | Journal of engineering for gas turbines and power 2014-01, Vol.136 (1), p.np-np |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | np |
---|---|
container_issue | 1 |
container_start_page | np |
container_title | Journal of engineering for gas turbines and power |
container_volume | 136 |
creator | Can Gülen, S Kim, Kihyung |
description | This paper describes a simplified physics-based method derived from fundamental relationships to accurately predict the dynamic response of the steam bottoming cycle of a combined cycle power plant to the changes in gas turbine exhaust temperature and flow rate. The method offers two advantages: (1) rapid calculation of various modes of combined cycle transient performance such as startup, shutdown, and load ramps for conceptual design and optimization studies, and (2) transparency of governing principles and solution methods for ease of use by a wider range of practitioners. Thus, the method facilitates better understanding and dissemination of said studies. All requisite formulas and methods described in the paper are readily amenable to implementation on a computational platform of the reader's choice. |
doi_str_mv | 10.1115/1.4025318 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520949669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520949669</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-da174f0f20070c25ca93964c00721523dfe15a4413377f767bf41da46c03eafb3</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEqUwMLN4QYIhxV-JY7YSoCBVgESZratjq6nyhd0M-e9x1Yrp6XS_e_fuELqmZEYpTR_oTBCWcpqfoAlNWZ7kiqpTNCFSsERIlZ6jixC2hFDOhZygjwUEvBr8umotLrpmryUuRlNb_Dy20FQGf1fNUMOu6tpHPMdfmzFUJuAnCJGMvT6i8773HZjNJTpzUAd7ddQp-nl9WRVvyfJz8V7Mlwlwme-SEqgUjjhGiCSGpQYUV5kwsWQxNS-dpSkIEUNK6WQm107QEkRmCLfg1nyK7g6-ce3vYMNON1Uwtq6htd0QdDQhSqgsUxG9P6DGdyF463Tvqwb8qCnR-59pqo8_i-zt0RaCgdp5aE0V_gdYzhlTnEXu5sBBaKzedoNv47WaSy4J53_PjHHu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520949669</pqid></control><display><type>article</type><title>Gas Turbine Combined Cycle Dynamic Simulation: A Physics Based Simple Approach</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Can Gülen, S ; Kim, Kihyung</creator><creatorcontrib>Can Gülen, S ; Kim, Kihyung</creatorcontrib><description>This paper describes a simplified physics-based method derived from fundamental relationships to accurately predict the dynamic response of the steam bottoming cycle of a combined cycle power plant to the changes in gas turbine exhaust temperature and flow rate. The method offers two advantages: (1) rapid calculation of various modes of combined cycle transient performance such as startup, shutdown, and load ramps for conceptual design and optimization studies, and (2) transparency of governing principles and solution methods for ease of use by a wider range of practitioners. Thus, the method facilitates better understanding and dissemination of said studies. All requisite formulas and methods described in the paper are readily amenable to implementation on a computational platform of the reader's choice.</description><identifier>ISSN: 0742-4795</identifier><identifier>EISSN: 1528-8919</identifier><identifier>DOI: 10.1115/1.4025318</identifier><identifier>CODEN: JETPEZ</identifier><language>eng</language><publisher>New York, Ny: ASME</publisher><subject>Applied sciences ; Combined cycle ; Combined cycle engines ; Computer simulation ; Electric power generation ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Flow rate ; Gas turbines ; Gas Turbines: Controls, Diagnostics, and Instrumentation ; Ramps ; Steam electric power generation</subject><ispartof>Journal of engineering for gas turbines and power, 2014-01, Vol.136 (1), p.np-np</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-da174f0f20070c25ca93964c00721523dfe15a4413377f767bf41da46c03eafb3</citedby><cites>FETCH-LOGICAL-a378t-da174f0f20070c25ca93964c00721523dfe15a4413377f767bf41da46c03eafb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28322932$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Can Gülen, S</creatorcontrib><creatorcontrib>Kim, Kihyung</creatorcontrib><title>Gas Turbine Combined Cycle Dynamic Simulation: A Physics Based Simple Approach</title><title>Journal of engineering for gas turbines and power</title><addtitle>J. Eng. Gas Turbines Power</addtitle><description>This paper describes a simplified physics-based method derived from fundamental relationships to accurately predict the dynamic response of the steam bottoming cycle of a combined cycle power plant to the changes in gas turbine exhaust temperature and flow rate. The method offers two advantages: (1) rapid calculation of various modes of combined cycle transient performance such as startup, shutdown, and load ramps for conceptual design and optimization studies, and (2) transparency of governing principles and solution methods for ease of use by a wider range of practitioners. Thus, the method facilitates better understanding and dissemination of said studies. All requisite formulas and methods described in the paper are readily amenable to implementation on a computational platform of the reader's choice.</description><subject>Applied sciences</subject><subject>Combined cycle</subject><subject>Combined cycle engines</subject><subject>Computer simulation</subject><subject>Electric power generation</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Flow rate</subject><subject>Gas turbines</subject><subject>Gas Turbines: Controls, Diagnostics, and Instrumentation</subject><subject>Ramps</subject><subject>Steam electric power generation</subject><issn>0742-4795</issn><issn>1528-8919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAQxS0EEqUwMLN4QYIhxV-JY7YSoCBVgESZratjq6nyhd0M-e9x1Yrp6XS_e_fuELqmZEYpTR_oTBCWcpqfoAlNWZ7kiqpTNCFSsERIlZ6jixC2hFDOhZygjwUEvBr8umotLrpmryUuRlNb_Dy20FQGf1fNUMOu6tpHPMdfmzFUJuAnCJGMvT6i8773HZjNJTpzUAd7ddQp-nl9WRVvyfJz8V7Mlwlwme-SEqgUjjhGiCSGpQYUV5kwsWQxNS-dpSkIEUNK6WQm107QEkRmCLfg1nyK7g6-ce3vYMNON1Uwtq6htd0QdDQhSqgsUxG9P6DGdyF463Tvqwb8qCnR-59pqo8_i-zt0RaCgdp5aE0V_gdYzhlTnEXu5sBBaKzedoNv47WaSy4J53_PjHHu</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Can Gülen, S</creator><creator>Kim, Kihyung</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140101</creationdate><title>Gas Turbine Combined Cycle Dynamic Simulation: A Physics Based Simple Approach</title><author>Can Gülen, S ; Kim, Kihyung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-da174f0f20070c25ca93964c00721523dfe15a4413377f767bf41da46c03eafb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Combined cycle</topic><topic>Combined cycle engines</topic><topic>Computer simulation</topic><topic>Electric power generation</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Flow rate</topic><topic>Gas turbines</topic><topic>Gas Turbines: Controls, Diagnostics, and Instrumentation</topic><topic>Ramps</topic><topic>Steam electric power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Can Gülen, S</creatorcontrib><creatorcontrib>Kim, Kihyung</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of engineering for gas turbines and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Can Gülen, S</au><au>Kim, Kihyung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas Turbine Combined Cycle Dynamic Simulation: A Physics Based Simple Approach</atitle><jtitle>Journal of engineering for gas turbines and power</jtitle><stitle>J. Eng. Gas Turbines Power</stitle><date>2014-01-01</date><risdate>2014</risdate><volume>136</volume><issue>1</issue><spage>np</spage><epage>np</epage><pages>np-np</pages><issn>0742-4795</issn><eissn>1528-8919</eissn><coden>JETPEZ</coden><abstract>This paper describes a simplified physics-based method derived from fundamental relationships to accurately predict the dynamic response of the steam bottoming cycle of a combined cycle power plant to the changes in gas turbine exhaust temperature and flow rate. The method offers two advantages: (1) rapid calculation of various modes of combined cycle transient performance such as startup, shutdown, and load ramps for conceptual design and optimization studies, and (2) transparency of governing principles and solution methods for ease of use by a wider range of practitioners. Thus, the method facilitates better understanding and dissemination of said studies. All requisite formulas and methods described in the paper are readily amenable to implementation on a computational platform of the reader's choice.</abstract><cop>New York, Ny</cop><pub>ASME</pub><doi>10.1115/1.4025318</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0742-4795 |
ispartof | Journal of engineering for gas turbines and power, 2014-01, Vol.136 (1), p.np-np |
issn | 0742-4795 1528-8919 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520949669 |
source | ASME Transactions Journals (Current); Alma/SFX Local Collection |
subjects | Applied sciences Combined cycle Combined cycle engines Computer simulation Electric power generation Energy Energy. Thermal use of fuels Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Flow rate Gas turbines Gas Turbines: Controls, Diagnostics, and Instrumentation Ramps Steam electric power generation |
title | Gas Turbine Combined Cycle Dynamic Simulation: A Physics Based Simple Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20Turbine%20Combined%20Cycle%20Dynamic%20Simulation:%20A%20Physics%20Based%20Simple%20Approach&rft.jtitle=Journal%20of%20engineering%20for%20gas%20turbines%20and%20power&rft.au=Can%20G%C3%BClen,%20S&rft.date=2014-01-01&rft.volume=136&rft.issue=1&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.issn=0742-4795&rft.eissn=1528-8919&rft.coden=JETPEZ&rft_id=info:doi/10.1115/1.4025318&rft_dat=%3Cproquest_cross%3E1520949669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520949669&rft_id=info:pmid/&rfr_iscdi=true |