A Simple Model for Axial Displacement in a Cylindrical Pipe With Internal Shock Loading
This paper describes a simplified model for predicting the axial displacement, stress, and strain in pipes subjected to internal shock waves. This model involves the neglect of radial and rotary inertia of the pipe, so its predictions represent the spatially averaged or low-pass–filtered response of...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics 2014-03, Vol.81 (3), p.np-np |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | np |
---|---|
container_issue | 3 |
container_start_page | np |
container_title | Journal of applied mechanics |
container_volume | 81 |
creator | Bitter, Neal P Shepherd, Joseph E |
description | This paper describes a simplified model for predicting the axial displacement, stress, and strain in pipes subjected to internal shock waves. This model involves the neglect of radial and rotary inertia of the pipe, so its predictions represent the spatially averaged or low-pass–filtered response of the tube. The simplified model is developed first by application of the physical principles of conservation of mass and momentum on each side of the shock wave. This model is then reproduced using the mathematical theory of the Green's function, which allows other load and boundary conditions to be more easily incorporated. Comparisons with finite element simulations demonstrate that the simple model adequately captures the tube's axial motion, except near the critical velocity corresponding to the bar wave speed E/ρ. Near this point, the simplified model, despite being an unsteady model, predicts a time-independent resonance, while the finite element model predicts resonance that grows with time. |
doi_str_mv | 10.1115/1.4025270 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520947809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520947809</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-33fe2a31b4748952b54faf267a8af90b67fc89892e6b39f5bb6d1775b83616f93</originalsourceid><addsrcrecordid>eNotkEtLAzEURoMoWKsL126y1MXUPCavZamvQkWhSpchM01samYyJlOw_94pdXU_7ne4cA8A1xhNMMbsHk9KRBgR6ASMMCOyUIjyUzBCiOBCKsrPwUXOW4QQk7wcgdUULn3TBQtf49oG6GKC019vAnzwuQumto1te-hbaOBsH3y7Tr4e2nffWbjy_QbO296mdlgtN7H-hoto1r79ugRnzoRsr_7nGHw-PX7MXorF2_N8Nl0UhmLRF5Q6S4ZYlaKUipGKlc44woWRxilUceFqqaQilldUOVZVfI2FYJWkHHOn6BjcHu92Kf7sbO5143NtQzCtjbusBwdIlUKiA3p3ROsUc07W6S75xqS9xkgf5Gms_-UN7M2RNbmxeht3hw-zpkMlMP0DAQ5obw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520947809</pqid></control><display><type>article</type><title>A Simple Model for Axial Displacement in a Cylindrical Pipe With Internal Shock Loading</title><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Bitter, Neal P ; Shepherd, Joseph E</creator><creatorcontrib>Bitter, Neal P ; Shepherd, Joseph E</creatorcontrib><description>This paper describes a simplified model for predicting the axial displacement, stress, and strain in pipes subjected to internal shock waves. This model involves the neglect of radial and rotary inertia of the pipe, so its predictions represent the spatially averaged or low-pass–filtered response of the tube. The simplified model is developed first by application of the physical principles of conservation of mass and momentum on each side of the shock wave. This model is then reproduced using the mathematical theory of the Green's function, which allows other load and boundary conditions to be more easily incorporated. Comparisons with finite element simulations demonstrate that the simple model adequately captures the tube's axial motion, except near the critical velocity corresponding to the bar wave speed E/ρ. Near this point, the simplified model, despite being an unsteady model, predicts a time-independent resonance, while the finite element model predicts resonance that grows with time.</description><identifier>ISSN: 0021-8936</identifier><identifier>EISSN: 1528-9036</identifier><identifier>DOI: 10.1115/1.4025270</identifier><language>eng</language><publisher>ASME</publisher><subject>Displacement ; Finite element method ; Mathematical analysis ; Mathematical models ; Pipe ; Shock loading ; Shock waves ; Tubes</subject><ispartof>Journal of applied mechanics, 2014-03, Vol.81 (3), p.np-np</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a317t-33fe2a31b4748952b54faf267a8af90b67fc89892e6b39f5bb6d1775b83616f93</citedby><cites>FETCH-LOGICAL-a317t-33fe2a31b4748952b54faf267a8af90b67fc89892e6b39f5bb6d1775b83616f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids></links><search><creatorcontrib>Bitter, Neal P</creatorcontrib><creatorcontrib>Shepherd, Joseph E</creatorcontrib><title>A Simple Model for Axial Displacement in a Cylindrical Pipe With Internal Shock Loading</title><title>Journal of applied mechanics</title><addtitle>J. Appl. Mech</addtitle><description>This paper describes a simplified model for predicting the axial displacement, stress, and strain in pipes subjected to internal shock waves. This model involves the neglect of radial and rotary inertia of the pipe, so its predictions represent the spatially averaged or low-pass–filtered response of the tube. The simplified model is developed first by application of the physical principles of conservation of mass and momentum on each side of the shock wave. This model is then reproduced using the mathematical theory of the Green's function, which allows other load and boundary conditions to be more easily incorporated. Comparisons with finite element simulations demonstrate that the simple model adequately captures the tube's axial motion, except near the critical velocity corresponding to the bar wave speed E/ρ. Near this point, the simplified model, despite being an unsteady model, predicts a time-independent resonance, while the finite element model predicts resonance that grows with time.</description><subject>Displacement</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Pipe</subject><subject>Shock loading</subject><subject>Shock waves</subject><subject>Tubes</subject><issn>0021-8936</issn><issn>1528-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEURoMoWKsL126y1MXUPCavZamvQkWhSpchM01samYyJlOw_94pdXU_7ne4cA8A1xhNMMbsHk9KRBgR6ASMMCOyUIjyUzBCiOBCKsrPwUXOW4QQk7wcgdUULn3TBQtf49oG6GKC019vAnzwuQumto1te-hbaOBsH3y7Tr4e2nffWbjy_QbO296mdlgtN7H-hoto1r79ugRnzoRsr_7nGHw-PX7MXorF2_N8Nl0UhmLRF5Q6S4ZYlaKUipGKlc44woWRxilUceFqqaQilldUOVZVfI2FYJWkHHOn6BjcHu92Kf7sbO5143NtQzCtjbusBwdIlUKiA3p3ROsUc07W6S75xqS9xkgf5Gms_-UN7M2RNbmxeht3hw-zpkMlMP0DAQ5obw</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Bitter, Neal P</creator><creator>Shepherd, Joseph E</creator><general>ASME</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20140301</creationdate><title>A Simple Model for Axial Displacement in a Cylindrical Pipe With Internal Shock Loading</title><author>Bitter, Neal P ; Shepherd, Joseph E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-33fe2a31b4748952b54faf267a8af90b67fc89892e6b39f5bb6d1775b83616f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Displacement</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Pipe</topic><topic>Shock loading</topic><topic>Shock waves</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bitter, Neal P</creatorcontrib><creatorcontrib>Shepherd, Joseph E</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bitter, Neal P</au><au>Shepherd, Joseph E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Model for Axial Displacement in a Cylindrical Pipe With Internal Shock Loading</atitle><jtitle>Journal of applied mechanics</jtitle><stitle>J. Appl. Mech</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>81</volume><issue>3</issue><spage>np</spage><epage>np</epage><pages>np-np</pages><issn>0021-8936</issn><eissn>1528-9036</eissn><abstract>This paper describes a simplified model for predicting the axial displacement, stress, and strain in pipes subjected to internal shock waves. This model involves the neglect of radial and rotary inertia of the pipe, so its predictions represent the spatially averaged or low-pass–filtered response of the tube. The simplified model is developed first by application of the physical principles of conservation of mass and momentum on each side of the shock wave. This model is then reproduced using the mathematical theory of the Green's function, which allows other load and boundary conditions to be more easily incorporated. Comparisons with finite element simulations demonstrate that the simple model adequately captures the tube's axial motion, except near the critical velocity corresponding to the bar wave speed E/ρ. Near this point, the simplified model, despite being an unsteady model, predicts a time-independent resonance, while the finite element model predicts resonance that grows with time.</abstract><pub>ASME</pub><doi>10.1115/1.4025270</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8936 |
ispartof | Journal of applied mechanics, 2014-03, Vol.81 (3), p.np-np |
issn | 0021-8936 1528-9036 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520947809 |
source | ASME Transactions Journals (Current); Alma/SFX Local Collection |
subjects | Displacement Finite element method Mathematical analysis Mathematical models Pipe Shock loading Shock waves Tubes |
title | A Simple Model for Axial Displacement in a Cylindrical Pipe With Internal Shock Loading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Model%20for%20Axial%20Displacement%20in%20a%20Cylindrical%20Pipe%20With%20Internal%20Shock%20Loading&rft.jtitle=Journal%20of%20applied%20mechanics&rft.au=Bitter,%20Neal%20P&rft.date=2014-03-01&rft.volume=81&rft.issue=3&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.issn=0021-8936&rft.eissn=1528-9036&rft_id=info:doi/10.1115/1.4025270&rft_dat=%3Cproquest_cross%3E1520947809%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520947809&rft_id=info:pmid/&rfr_iscdi=true |