Impedance of a Spacecraft-Borne Antenna in the Magnetospheric Plasma and Quasi-Equilibrium Noise EMF in the Lower-Hybrid Frequency Band

We present analytical and numerical estimations of the value and frequency dependence of the impedance and noise electromotive force (EMF) in the context of the conditions which correspond to the trajectories and parameters of the antennas borne by geophysical monitoring satellites. The estimations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiophysics and quantum electronics 2013-07, Vol.56 (2), p.61-77
Hauptverfasser: Chugunov, Yu. V., Grach, V. S., Pasmanik, D. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue 2
container_start_page 61
container_title Radiophysics and quantum electronics
container_volume 56
creator Chugunov, Yu. V.
Grach, V. S.
Pasmanik, D. L.
description We present analytical and numerical estimations of the value and frequency dependence of the impedance and noise electromotive force (EMF) in the context of the conditions which correspond to the trajectories and parameters of the antennas borne by geophysical monitoring satellites. The estimations were obtained for two circular orbits at altitudes of 600 and 1200 km over the Earth’s surface in the frequency range from 20 to 120 kHz, which corresponded to the area of the lower-hybrid resonance, where a higher level of noise emissions is observed at the altitudes under consideration. It is shown that near the lower-hybrid resonance frequency, the real part of the antenna impedance is determined by the resonant “monopole” loss by radiation of quasipotential waves. In the nonresonant frequency band (at the frequencies below the frequency of the lowerhybrid resonance), the antenna reactance is determined by the transit loss, which is, however, low as compared with the resonant loss. When the noise was calculated, the medium was assumed to be a two-temperature plasma. The spectral density of the power of the noise EMF lies in the range and is determined mainly by suprathermal electrons. In the nonresonant frequency band, the efficient temperature of noise radiation is equal to the temperature of the “cold” plasma component, and the antenna reactance is determined by the transit loss, i.e., the level of the noise EMF is low as compared with the EMF in the resonant frequency band.
doi_str_mv 10.1007/s11141-013-9416-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520942688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A343364751</galeid><sourcerecordid>A343364751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-9c331efe1aace7d7826f5f8eb8f7b7365d6a4c7f11b348fa828564729a512dc93</originalsourceid><addsrcrecordid>eNp1kd1qHCEYhofSQrdpL6BnQk96YuqnzoxzuAm7TWDTH9oei-t8bgwzutEZwl5Bb7uGSaAUqgeiPo--8FbVe2DnwFj7KQOABMpA0E5CQ_mLagV1W3bA2ctqxZgQVEkpXldvcr5jrFhSrarf1-MRexMskuiIIT-OxqJNxk30IqaAZB0mDMEQH8h0i-TGHAJOMR9vMXlLvg0mj4aY0JPvs8mebu5nP_h98vNIvkSfkWxuts_yLj5golenct2TbcL7GYM9kYuiv61eOTNkfPe0nlW_tpufl1d09_Xz9eV6R62QbKKdFQLQIZgSs-1bxRtXO4V75dp9K5q6b4y0rQPYC6mcUVzVjWx5Z2rgve3EWfVxefeYYvk-T3r02eIwmIBxzhpqzjrJG6UK-uEf9C7OKZR0Gpq6DCV5XajzhTqYAbUPLk7J2DJ7HL2NAZ0v52shhShBaigCLIJNMeeETh-TH006aWD6sUu9dKlLl_qxS82LwxcnFzYcMP0V5b_SH5zAoMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1655558425</pqid></control><display><type>article</type><title>Impedance of a Spacecraft-Borne Antenna in the Magnetospheric Plasma and Quasi-Equilibrium Noise EMF in the Lower-Hybrid Frequency Band</title><source>SpringerNature Journals</source><creator>Chugunov, Yu. V. ; Grach, V. S. ; Pasmanik, D. L.</creator><creatorcontrib>Chugunov, Yu. V. ; Grach, V. S. ; Pasmanik, D. L.</creatorcontrib><description>We present analytical and numerical estimations of the value and frequency dependence of the impedance and noise electromotive force (EMF) in the context of the conditions which correspond to the trajectories and parameters of the antennas borne by geophysical monitoring satellites. The estimations were obtained for two circular orbits at altitudes of 600 and 1200 km over the Earth’s surface in the frequency range from 20 to 120 kHz, which corresponded to the area of the lower-hybrid resonance, where a higher level of noise emissions is observed at the altitudes under consideration. It is shown that near the lower-hybrid resonance frequency, the real part of the antenna impedance is determined by the resonant “monopole” loss by radiation of quasipotential waves. In the nonresonant frequency band (at the frequencies below the frequency of the lowerhybrid resonance), the antenna reactance is determined by the transit loss, which is, however, low as compared with the resonant loss. When the noise was calculated, the medium was assumed to be a two-temperature plasma. The spectral density of the power of the noise EMF lies in the range and is determined mainly by suprathermal electrons. In the nonresonant frequency band, the efficient temperature of noise radiation is equal to the temperature of the “cold” plasma component, and the antenna reactance is determined by the transit loss, i.e., the level of the noise EMF is low as compared with the EMF in the resonant frequency band.</description><identifier>ISSN: 0033-8443</identifier><identifier>EISSN: 1573-9120</identifier><identifier>DOI: 10.1007/s11141-013-9416-2</identifier><identifier>CODEN: RPQEAC</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Antennas ; Antennas (Electronics) ; Astronomy ; Astrophysics and Astroparticles ; EMF ; Frequency bands ; Hadrons ; Heavy Ions ; Impedance ; Lasers ; Mathematical analysis ; Mathematical and Computational Physics ; Noise ; Nuclear Physics ; Observations and Techniques ; Optical Devices ; Optics ; Orbits ; Photonics ; Physics ; Physics and Astronomy ; Quantum Optics ; Reactance ; Space ships ; Space vehicles ; Theoretical ; Transit</subject><ispartof>Radiophysics and quantum electronics, 2013-07, Vol.56 (2), p.61-77</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c340t-9c331efe1aace7d7826f5f8eb8f7b7365d6a4c7f11b348fa828564729a512dc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11141-013-9416-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11141-013-9416-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chugunov, Yu. V.</creatorcontrib><creatorcontrib>Grach, V. S.</creatorcontrib><creatorcontrib>Pasmanik, D. L.</creatorcontrib><title>Impedance of a Spacecraft-Borne Antenna in the Magnetospheric Plasma and Quasi-Equilibrium Noise EMF in the Lower-Hybrid Frequency Band</title><title>Radiophysics and quantum electronics</title><addtitle>Radiophys Quantum El</addtitle><description>We present analytical and numerical estimations of the value and frequency dependence of the impedance and noise electromotive force (EMF) in the context of the conditions which correspond to the trajectories and parameters of the antennas borne by geophysical monitoring satellites. The estimations were obtained for two circular orbits at altitudes of 600 and 1200 km over the Earth’s surface in the frequency range from 20 to 120 kHz, which corresponded to the area of the lower-hybrid resonance, where a higher level of noise emissions is observed at the altitudes under consideration. It is shown that near the lower-hybrid resonance frequency, the real part of the antenna impedance is determined by the resonant “monopole” loss by radiation of quasipotential waves. In the nonresonant frequency band (at the frequencies below the frequency of the lowerhybrid resonance), the antenna reactance is determined by the transit loss, which is, however, low as compared with the resonant loss. When the noise was calculated, the medium was assumed to be a two-temperature plasma. The spectral density of the power of the noise EMF lies in the range and is determined mainly by suprathermal electrons. In the nonresonant frequency band, the efficient temperature of noise radiation is equal to the temperature of the “cold” plasma component, and the antenna reactance is determined by the transit loss, i.e., the level of the noise EMF is low as compared with the EMF in the resonant frequency band.</description><subject>Antennas</subject><subject>Antennas (Electronics)</subject><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>EMF</subject><subject>Frequency bands</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Impedance</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Noise</subject><subject>Nuclear Physics</subject><subject>Observations and Techniques</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Orbits</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>Reactance</subject><subject>Space ships</subject><subject>Space vehicles</subject><subject>Theoretical</subject><subject>Transit</subject><issn>0033-8443</issn><issn>1573-9120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kd1qHCEYhofSQrdpL6BnQk96YuqnzoxzuAm7TWDTH9oei-t8bgwzutEZwl5Bb7uGSaAUqgeiPo--8FbVe2DnwFj7KQOABMpA0E5CQ_mLagV1W3bA2ctqxZgQVEkpXldvcr5jrFhSrarf1-MRexMskuiIIT-OxqJNxk30IqaAZB0mDMEQH8h0i-TGHAJOMR9vMXlLvg0mj4aY0JPvs8mebu5nP_h98vNIvkSfkWxuts_yLj5golenct2TbcL7GYM9kYuiv61eOTNkfPe0nlW_tpufl1d09_Xz9eV6R62QbKKdFQLQIZgSs-1bxRtXO4V75dp9K5q6b4y0rQPYC6mcUVzVjWx5Z2rgve3EWfVxefeYYvk-T3r02eIwmIBxzhpqzjrJG6UK-uEf9C7OKZR0Gpq6DCV5XajzhTqYAbUPLk7J2DJ7HL2NAZ0v52shhShBaigCLIJNMeeETh-TH006aWD6sUu9dKlLl_qxS82LwxcnFzYcMP0V5b_SH5zAoMA</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Chugunov, Yu. V.</creator><creator>Grach, V. S.</creator><creator>Pasmanik, D. L.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20130701</creationdate><title>Impedance of a Spacecraft-Borne Antenna in the Magnetospheric Plasma and Quasi-Equilibrium Noise EMF in the Lower-Hybrid Frequency Band</title><author>Chugunov, Yu. V. ; Grach, V. S. ; Pasmanik, D. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-9c331efe1aace7d7826f5f8eb8f7b7365d6a4c7f11b348fa828564729a512dc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antennas</topic><topic>Antennas (Electronics)</topic><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>EMF</topic><topic>Frequency bands</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Impedance</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Noise</topic><topic>Nuclear Physics</topic><topic>Observations and Techniques</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Orbits</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>Reactance</topic><topic>Space ships</topic><topic>Space vehicles</topic><topic>Theoretical</topic><topic>Transit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chugunov, Yu. V.</creatorcontrib><creatorcontrib>Grach, V. S.</creatorcontrib><creatorcontrib>Pasmanik, D. L.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Radiophysics and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chugunov, Yu. V.</au><au>Grach, V. S.</au><au>Pasmanik, D. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impedance of a Spacecraft-Borne Antenna in the Magnetospheric Plasma and Quasi-Equilibrium Noise EMF in the Lower-Hybrid Frequency Band</atitle><jtitle>Radiophysics and quantum electronics</jtitle><stitle>Radiophys Quantum El</stitle><date>2013-07-01</date><risdate>2013</risdate><volume>56</volume><issue>2</issue><spage>61</spage><epage>77</epage><pages>61-77</pages><issn>0033-8443</issn><eissn>1573-9120</eissn><coden>RPQEAC</coden><abstract>We present analytical and numerical estimations of the value and frequency dependence of the impedance and noise electromotive force (EMF) in the context of the conditions which correspond to the trajectories and parameters of the antennas borne by geophysical monitoring satellites. The estimations were obtained for two circular orbits at altitudes of 600 and 1200 km over the Earth’s surface in the frequency range from 20 to 120 kHz, which corresponded to the area of the lower-hybrid resonance, where a higher level of noise emissions is observed at the altitudes under consideration. It is shown that near the lower-hybrid resonance frequency, the real part of the antenna impedance is determined by the resonant “monopole” loss by radiation of quasipotential waves. In the nonresonant frequency band (at the frequencies below the frequency of the lowerhybrid resonance), the antenna reactance is determined by the transit loss, which is, however, low as compared with the resonant loss. When the noise was calculated, the medium was assumed to be a two-temperature plasma. The spectral density of the power of the noise EMF lies in the range and is determined mainly by suprathermal electrons. In the nonresonant frequency band, the efficient temperature of noise radiation is equal to the temperature of the “cold” plasma component, and the antenna reactance is determined by the transit loss, i.e., the level of the noise EMF is low as compared with the EMF in the resonant frequency band.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11141-013-9416-2</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-8443
ispartof Radiophysics and quantum electronics, 2013-07, Vol.56 (2), p.61-77
issn 0033-8443
1573-9120
language eng
recordid cdi_proquest_miscellaneous_1520942688
source SpringerNature Journals
subjects Antennas
Antennas (Electronics)
Astronomy
Astrophysics and Astroparticles
EMF
Frequency bands
Hadrons
Heavy Ions
Impedance
Lasers
Mathematical analysis
Mathematical and Computational Physics
Noise
Nuclear Physics
Observations and Techniques
Optical Devices
Optics
Orbits
Photonics
Physics
Physics and Astronomy
Quantum Optics
Reactance
Space ships
Space vehicles
Theoretical
Transit
title Impedance of a Spacecraft-Borne Antenna in the Magnetospheric Plasma and Quasi-Equilibrium Noise EMF in the Lower-Hybrid Frequency Band
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impedance%20of%20a%20Spacecraft-Borne%20Antenna%20in%20the%20Magnetospheric%20Plasma%20and%20Quasi-Equilibrium%20Noise%20EMF%20in%20the%20Lower-Hybrid%20Frequency%20Band&rft.jtitle=Radiophysics%20and%20quantum%20electronics&rft.au=Chugunov,%20Yu.%20V.&rft.date=2013-07-01&rft.volume=56&rft.issue=2&rft.spage=61&rft.epage=77&rft.pages=61-77&rft.issn=0033-8443&rft.eissn=1573-9120&rft.coden=RPQEAC&rft_id=info:doi/10.1007/s11141-013-9416-2&rft_dat=%3Cgale_proqu%3EA343364751%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1655558425&rft_id=info:pmid/&rft_galeid=A343364751&rfr_iscdi=true