Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics

G-protein coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. They are known to adopt multiple conformational states (e.g., inactive, intermediate and active) during their modulation of var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2014-01, Vol.16 (14), p.6398-6406
Hauptverfasser: Miao, Yinglong, Nichols, Sara E, McCammon, J Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6406
container_issue 14
container_start_page 6398
container_title Physical chemistry chemical physics : PCCP
container_volume 16
creator Miao, Yinglong
Nichols, Sara E
McCammon, J Andrew
description G-protein coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. They are known to adopt multiple conformational states (e.g., inactive, intermediate and active) during their modulation of various cell signaling pathways. Here, the free energy landscape of GPCRs is explored using accelerated molecular dynamics (aMD) simulations as demonstrated on the M2 muscarinic receptor, a key GPCR that regulates human heart rate and contractile forces of cardiomyocytes. Free energy profiles of important structural motifs that undergo conformational transitions upon GPCR activation and allosteric signaling are analyzed in detail, including the Arg(3.50)-Glu(6.30) ionic lock, the Trp(6.48) toggle switch and the hydrogen interactions between Tyr(5.58)-Tyr(7.53).
doi_str_mv 10.1039/c3cp53962h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520938761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520938761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-d79f6c46de23230daa9ba8f4a5809df9f6d2e2e63cdaec39a5469c6fe98f0b973</originalsourceid><addsrcrecordid>eNqNkM1KxDAUhYMozji68QEkSxGraZKmzVIGZxQG3Oi6psmNVtqmJi3Ytzcy47h1df8-DucehM5TcpMSJm81033GpKDvB2iecsESSQp-uO9zMUMnIXwQQtIsZcdoRjnnGS34HL2uPACGDvzbhBvVmaBVD9hZvE567waoO6zd2DdgsAcN_eB8uMbw1TfOx101YaU1NODVEMfWNaDHRnlspk61tQ6n6MiqJsDZri7Qy-r-efmQbJ7Wj8u7TaIzQobE5NIKzYUByigjRilZqcJylRVEGhuPhgIFwbRRoJlUGRdSCwuysKSSOVugy61udP05QhjKtg7RWPwJ3BjKNKNEsiIX6T9QkucxTsojerVFtXcheLBl7-tW-alMSfkTfvkXfoQvdrpj1YLZo79ps2_P0oES</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507796224</pqid></control><display><type>article</type><title>Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Miao, Yinglong ; Nichols, Sara E ; McCammon, J Andrew</creator><creatorcontrib>Miao, Yinglong ; Nichols, Sara E ; McCammon, J Andrew</creatorcontrib><description>G-protein coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. They are known to adopt multiple conformational states (e.g., inactive, intermediate and active) during their modulation of various cell signaling pathways. Here, the free energy landscape of GPCRs is explored using accelerated molecular dynamics (aMD) simulations as demonstrated on the M2 muscarinic receptor, a key GPCR that regulates human heart rate and contractile forces of cardiomyocytes. Free energy profiles of important structural motifs that undergo conformational transitions upon GPCR activation and allosteric signaling are analyzed in detail, including the Arg(3.50)-Glu(6.30) ionic lock, the Trp(6.48) toggle switch and the hydrogen interactions between Tyr(5.58)-Tyr(7.53).</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c3cp53962h</identifier><identifier>PMID: 24445284</identifier><language>eng</language><publisher>England</publisher><subject>Allosteric Regulation ; Cellular ; Diseases ; Free energy ; Heart rate ; Heart Rate - physiology ; Humans ; Hydrogen Bonding ; Landscapes ; Molecular dynamics ; Molecular Dynamics Simulation ; Muscle Contraction - physiology ; Myocytes, Cardiac - cytology ; Myocytes, Cardiac - physiology ; Neurotransmitters ; Protein Structure, Tertiary ; Receptor, Muscarinic M2 - chemistry ; Receptor, Muscarinic M2 - metabolism ; Receptors ; Signal Transduction ; Thermodynamics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2014-01, Vol.16 (14), p.6398-6406</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-d79f6c46de23230daa9ba8f4a5809df9f6d2e2e63cdaec39a5469c6fe98f0b973</citedby><cites>FETCH-LOGICAL-c500t-d79f6c46de23230daa9ba8f4a5809df9f6d2e2e63cdaec39a5469c6fe98f0b973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24445284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Yinglong</creatorcontrib><creatorcontrib>Nichols, Sara E</creatorcontrib><creatorcontrib>McCammon, J Andrew</creatorcontrib><title>Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>G-protein coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. They are known to adopt multiple conformational states (e.g., inactive, intermediate and active) during their modulation of various cell signaling pathways. Here, the free energy landscape of GPCRs is explored using accelerated molecular dynamics (aMD) simulations as demonstrated on the M2 muscarinic receptor, a key GPCR that regulates human heart rate and contractile forces of cardiomyocytes. Free energy profiles of important structural motifs that undergo conformational transitions upon GPCR activation and allosteric signaling are analyzed in detail, including the Arg(3.50)-Glu(6.30) ionic lock, the Trp(6.48) toggle switch and the hydrogen interactions between Tyr(5.58)-Tyr(7.53).</description><subject>Allosteric Regulation</subject><subject>Cellular</subject><subject>Diseases</subject><subject>Free energy</subject><subject>Heart rate</subject><subject>Heart Rate - physiology</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>Landscapes</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Muscle Contraction - physiology</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Neurotransmitters</subject><subject>Protein Structure, Tertiary</subject><subject>Receptor, Muscarinic M2 - chemistry</subject><subject>Receptor, Muscarinic M2 - metabolism</subject><subject>Receptors</subject><subject>Signal Transduction</subject><subject>Thermodynamics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1KxDAUhYMozji68QEkSxGraZKmzVIGZxQG3Oi6psmNVtqmJi3Ytzcy47h1df8-DucehM5TcpMSJm81033GpKDvB2iecsESSQp-uO9zMUMnIXwQQtIsZcdoRjnnGS34HL2uPACGDvzbhBvVmaBVD9hZvE567waoO6zd2DdgsAcN_eB8uMbw1TfOx101YaU1NODVEMfWNaDHRnlspk61tQ6n6MiqJsDZri7Qy-r-efmQbJ7Wj8u7TaIzQobE5NIKzYUByigjRilZqcJylRVEGhuPhgIFwbRRoJlUGRdSCwuysKSSOVugy61udP05QhjKtg7RWPwJ3BjKNKNEsiIX6T9QkucxTsojerVFtXcheLBl7-tW-alMSfkTfvkXfoQvdrpj1YLZo79ps2_P0oES</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Miao, Yinglong</creator><creator>Nichols, Sara E</creator><creator>McCammon, J Andrew</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics</title><author>Miao, Yinglong ; Nichols, Sara E ; McCammon, J Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-d79f6c46de23230daa9ba8f4a5809df9f6d2e2e63cdaec39a5469c6fe98f0b973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Allosteric Regulation</topic><topic>Cellular</topic><topic>Diseases</topic><topic>Free energy</topic><topic>Heart rate</topic><topic>Heart Rate - physiology</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>Landscapes</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Muscle Contraction - physiology</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Neurotransmitters</topic><topic>Protein Structure, Tertiary</topic><topic>Receptor, Muscarinic M2 - chemistry</topic><topic>Receptor, Muscarinic M2 - metabolism</topic><topic>Receptors</topic><topic>Signal Transduction</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Yinglong</creatorcontrib><creatorcontrib>Nichols, Sara E</creatorcontrib><creatorcontrib>McCammon, J Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Yinglong</au><au>Nichols, Sara E</au><au>McCammon, J Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>16</volume><issue>14</issue><spage>6398</spage><epage>6406</epage><pages>6398-6406</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>G-protein coupled receptors (GPCRs) mediate cellular responses to various hormones and neurotransmitters and are important targets for treating a wide spectrum of diseases. They are known to adopt multiple conformational states (e.g., inactive, intermediate and active) during their modulation of various cell signaling pathways. Here, the free energy landscape of GPCRs is explored using accelerated molecular dynamics (aMD) simulations as demonstrated on the M2 muscarinic receptor, a key GPCR that regulates human heart rate and contractile forces of cardiomyocytes. Free energy profiles of important structural motifs that undergo conformational transitions upon GPCR activation and allosteric signaling are analyzed in detail, including the Arg(3.50)-Glu(6.30) ionic lock, the Trp(6.48) toggle switch and the hydrogen interactions between Tyr(5.58)-Tyr(7.53).</abstract><cop>England</cop><pmid>24445284</pmid><doi>10.1039/c3cp53962h</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2014-01, Vol.16 (14), p.6398-6406
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1520938761
source MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Allosteric Regulation
Cellular
Diseases
Free energy
Heart rate
Heart Rate - physiology
Humans
Hydrogen Bonding
Landscapes
Molecular dynamics
Molecular Dynamics Simulation
Muscle Contraction - physiology
Myocytes, Cardiac - cytology
Myocytes, Cardiac - physiology
Neurotransmitters
Protein Structure, Tertiary
Receptor, Muscarinic M2 - chemistry
Receptor, Muscarinic M2 - metabolism
Receptors
Signal Transduction
Thermodynamics
title Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T05%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20energy%20landscape%20of%20G-protein%20coupled%20receptors,%20explored%20by%20accelerated%20molecular%20dynamics&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Miao,%20Yinglong&rft.date=2014-01-01&rft.volume=16&rft.issue=14&rft.spage=6398&rft.epage=6406&rft.pages=6398-6406&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c3cp53962h&rft_dat=%3Cproquest_cross%3E1520938761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507796224&rft_id=info:pmid/24445284&rfr_iscdi=true