Cutoff wavenumbers of eccentric circular metallic waveguides
Cutoff wavenumbers knm are determined analytically for an eccentric circular metallic waveguide. Separation of variables technique is used for the solution. For small eccentricities kd, where d is the distance between the axes of the cylinders, cosine and sine laws are used instead of the translatio...
Gespeichert in:
Veröffentlicht in: | IET microwaves, antennas & propagation antennas & propagation, 2014-01, Vol.8 (2), p.104-111 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111 |
---|---|
container_issue | 2 |
container_start_page | 104 |
container_title | IET microwaves, antennas & propagation |
container_volume | 8 |
creator | Kotsis, Aristides D Roumeliotis, John A |
description | Cutoff wavenumbers knm are determined analytically for an eccentric circular metallic waveguide. Separation of variables technique is used for the solution. For small eccentricities kd, where d is the distance between the axes of the cylinders, cosine and sine laws are used instead of the translational addition theorem, in order to satisfy the boundary conditions at the surface of the outer cylinder. Keeping terms up to the order (kd)2 exact, analytical expressions of the form knm(d) = knm(0)[1 + gnm(knmd)2 + O(knmd)4] are obtained for the cutoff wavenumbers of the waveguides, where knm(0) corresponds to the coaxial geometry, with d = 0. Both transverse magnetic and transverse electric modes are considered. Numerical results are given for all types of modes and for various values of the parameters. The method used here is an alternative of the one using the translational addition theorem, in the case of small eccentricities. |
doi_str_mv | 10.1049/iet-map.2013.0281 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520933102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520933102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5024-77202649f349b4f24cb38e46706bccd14f215a9c42ae69770cdddeff6ca463443</originalsourceid><addsrcrecordid>eNqFkF1LwzAYhYMoOKc_wLuCCHrRme-24s0cmw429GJehyxNpNIvk9axf29KxxQRvUp4ec55z3sAOEdwhCBNbjLdhIWsRxgiMoI4RgdggCKGwjgi5HD_x-wYnDj3BiFjjEQDcDdpm8qYYCM_dNkWa21dUJlAK6XLxmYqUJlVbS5tUOhG5rmfdOhrm6XanYIjI3Onz3bvELzMpqvJY7h4ephPxotQMYhpGEUYYk4TQ2iypgZTtSaxpjyCfK1UivwIMZkoiqXmSRRBlaapNoYrSTmhlAzBVe9b2-q91a4RReaUznNZ6qp1AjEME0IQxB69-IG-Va0tfTpPQcL9Ul_IEKCeUrZyzmojapsV0m4FgqLrU_g-he9TdH2Krk-vudw5S6dkbqwsVeb2Qo9wHHPmudue22S53v5vLJbzMb6fQYji7tKwF3fYV_I_Ql3_ws-nK7EcP3_bUaeGfAKrZaQL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503667073</pqid></control><display><type>article</type><title>Cutoff wavenumbers of eccentric circular metallic waveguides</title><source>Wiley-Blackwell Open Access Titles</source><creator>Kotsis, Aristides D ; Roumeliotis, John A</creator><creatorcontrib>Kotsis, Aristides D ; Roumeliotis, John A</creatorcontrib><description>Cutoff wavenumbers knm are determined analytically for an eccentric circular metallic waveguide. Separation of variables technique is used for the solution. For small eccentricities kd, where d is the distance between the axes of the cylinders, cosine and sine laws are used instead of the translational addition theorem, in order to satisfy the boundary conditions at the surface of the outer cylinder. Keeping terms up to the order (kd)2 exact, analytical expressions of the form knm(d) = knm(0)[1 + gnm(knmd)2 + O(knmd)4] are obtained for the cutoff wavenumbers of the waveguides, where knm(0) corresponds to the coaxial geometry, with d = 0. Both transverse magnetic and transverse electric modes are considered. Numerical results are given for all types of modes and for various values of the parameters. The method used here is an alternative of the one using the translational addition theorem, in the case of small eccentricities.</description><identifier>ISSN: 1751-8725</identifier><identifier>ISSN: 1751-8733</identifier><identifier>EISSN: 1751-8733</identifier><identifier>DOI: 10.1049/iet-map.2013.0281</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>Addition theorem ; Applied sciences ; Circuit properties ; circular waveguides ; coaxial geometry ; cosine law ; cutoff wavenumber ; Cylinders ; eccentric circular metallic waveguide ; Eccentricity ; Eccentrics ; Electric, optical and optoelectronic circuits ; Electronics ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits ; translational addition theorem ; transverse electric mode ; transverse magnetic mode ; Waveguides ; Wavenumber</subject><ispartof>IET microwaves, antennas & propagation, 2014-01, Vol.8 (2), p.104-111</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2014 The Institution of Engineering and Technology</rights><rights>2015 INIST-CNRS</rights><rights>Copyright The Institution of Engineering & Technology Jan 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5024-77202649f349b4f24cb38e46706bccd14f215a9c42ae69770cdddeff6ca463443</citedby><cites>FETCH-LOGICAL-c5024-77202649f349b4f24cb38e46706bccd14f215a9c42ae69770cdddeff6ca463443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-map.2013.0281$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-map.2013.0281$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-map.2013.0281$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28162865$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotsis, Aristides D</creatorcontrib><creatorcontrib>Roumeliotis, John A</creatorcontrib><title>Cutoff wavenumbers of eccentric circular metallic waveguides</title><title>IET microwaves, antennas & propagation</title><description>Cutoff wavenumbers knm are determined analytically for an eccentric circular metallic waveguide. Separation of variables technique is used for the solution. For small eccentricities kd, where d is the distance between the axes of the cylinders, cosine and sine laws are used instead of the translational addition theorem, in order to satisfy the boundary conditions at the surface of the outer cylinder. Keeping terms up to the order (kd)2 exact, analytical expressions of the form knm(d) = knm(0)[1 + gnm(knmd)2 + O(knmd)4] are obtained for the cutoff wavenumbers of the waveguides, where knm(0) corresponds to the coaxial geometry, with d = 0. Both transverse magnetic and transverse electric modes are considered. Numerical results are given for all types of modes and for various values of the parameters. The method used here is an alternative of the one using the translational addition theorem, in the case of small eccentricities.</description><subject>Addition theorem</subject><subject>Applied sciences</subject><subject>Circuit properties</subject><subject>circular waveguides</subject><subject>coaxial geometry</subject><subject>cosine law</subject><subject>cutoff wavenumber</subject><subject>Cylinders</subject><subject>eccentric circular metallic waveguide</subject><subject>Eccentricity</subject><subject>Eccentrics</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</subject><subject>translational addition theorem</subject><subject>transverse electric mode</subject><subject>transverse magnetic mode</subject><subject>Waveguides</subject><subject>Wavenumber</subject><issn>1751-8725</issn><issn>1751-8733</issn><issn>1751-8733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAYhYMoOKc_wLuCCHrRme-24s0cmw429GJehyxNpNIvk9axf29KxxQRvUp4ec55z3sAOEdwhCBNbjLdhIWsRxgiMoI4RgdggCKGwjgi5HD_x-wYnDj3BiFjjEQDcDdpm8qYYCM_dNkWa21dUJlAK6XLxmYqUJlVbS5tUOhG5rmfdOhrm6XanYIjI3Onz3bvELzMpqvJY7h4ephPxotQMYhpGEUYYk4TQ2iypgZTtSaxpjyCfK1UivwIMZkoiqXmSRRBlaapNoYrSTmhlAzBVe9b2-q91a4RReaUznNZ6qp1AjEME0IQxB69-IG-Va0tfTpPQcL9Ul_IEKCeUrZyzmojapsV0m4FgqLrU_g-he9TdH2Krk-vudw5S6dkbqwsVeb2Qo9wHHPmudue22S53v5vLJbzMb6fQYji7tKwF3fYV_I_Ql3_ws-nK7EcP3_bUaeGfAKrZaQL</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Kotsis, Aristides D</creator><creator>Roumeliotis, John A</creator><general>The Institution of Engineering and Technology</general><general>Institution of Engineering and Technology</general><general>The Institution of Engineering & Technology</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>Cutoff wavenumbers of eccentric circular metallic waveguides</title><author>Kotsis, Aristides D ; Roumeliotis, John A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5024-77202649f349b4f24cb38e46706bccd14f215a9c42ae69770cdddeff6ca463443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Addition theorem</topic><topic>Applied sciences</topic><topic>Circuit properties</topic><topic>circular waveguides</topic><topic>coaxial geometry</topic><topic>cosine law</topic><topic>cutoff wavenumber</topic><topic>Cylinders</topic><topic>eccentric circular metallic waveguide</topic><topic>Eccentricity</topic><topic>Eccentrics</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits</topic><topic>translational addition theorem</topic><topic>transverse electric mode</topic><topic>transverse magnetic mode</topic><topic>Waveguides</topic><topic>Wavenumber</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotsis, Aristides D</creatorcontrib><creatorcontrib>Roumeliotis, John A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IET microwaves, antennas & propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kotsis, Aristides D</au><au>Roumeliotis, John A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cutoff wavenumbers of eccentric circular metallic waveguides</atitle><jtitle>IET microwaves, antennas & propagation</jtitle><date>2014-01</date><risdate>2014</risdate><volume>8</volume><issue>2</issue><spage>104</spage><epage>111</epage><pages>104-111</pages><issn>1751-8725</issn><issn>1751-8733</issn><eissn>1751-8733</eissn><abstract>Cutoff wavenumbers knm are determined analytically for an eccentric circular metallic waveguide. Separation of variables technique is used for the solution. For small eccentricities kd, where d is the distance between the axes of the cylinders, cosine and sine laws are used instead of the translational addition theorem, in order to satisfy the boundary conditions at the surface of the outer cylinder. Keeping terms up to the order (kd)2 exact, analytical expressions of the form knm(d) = knm(0)[1 + gnm(knmd)2 + O(knmd)4] are obtained for the cutoff wavenumbers of the waveguides, where knm(0) corresponds to the coaxial geometry, with d = 0. Both transverse magnetic and transverse electric modes are considered. Numerical results are given for all types of modes and for various values of the parameters. The method used here is an alternative of the one using the translational addition theorem, in the case of small eccentricities.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-map.2013.0281</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-8725 |
ispartof | IET microwaves, antennas & propagation, 2014-01, Vol.8 (2), p.104-111 |
issn | 1751-8725 1751-8733 1751-8733 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520933102 |
source | Wiley-Blackwell Open Access Titles |
subjects | Addition theorem Applied sciences Circuit properties circular waveguides coaxial geometry cosine law cutoff wavenumber Cylinders eccentric circular metallic waveguide Eccentricity Eccentrics Electric, optical and optoelectronic circuits Electronics Exact sciences and technology Mathematical analysis Mathematical models Microwave circuits, microwave integrated circuits, microwave transmission lines, submillimeter wave circuits translational addition theorem transverse electric mode transverse magnetic mode Waveguides Wavenumber |
title | Cutoff wavenumbers of eccentric circular metallic waveguides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cutoff%20wavenumbers%20of%20eccentric%20circular%20metallic%20waveguides&rft.jtitle=IET%20microwaves,%20antennas%20&%20propagation&rft.au=Kotsis,%20Aristides%20D&rft.date=2014-01&rft.volume=8&rft.issue=2&rft.spage=104&rft.epage=111&rft.pages=104-111&rft.issn=1751-8725&rft.eissn=1751-8733&rft_id=info:doi/10.1049/iet-map.2013.0281&rft_dat=%3Cproquest_24P%3E1520933102%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503667073&rft_id=info:pmid/&rfr_iscdi=true |