Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming
This study aims to develop, for the first time, thermoplastic polyurethane (TPU) microcellular composite fibers via an extrusion foaming process using supercritical CO2 as a blowing agent. Results showed that by employing organically modified montmorillonite clay nanoparticles (CloisiteTR 20A) in th...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2013-11, Vol.53 (11), p.2360-2369 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2369 |
---|---|
container_issue | 11 |
container_start_page | 2360 |
container_title | Polymer engineering and science |
container_volume | 53 |
creator | Dai, Chenglong Zhang, Cailiang Huang, Wenyi Chang, Kung-Chin Lee, Ly James |
description | This study aims to develop, for the first time, thermoplastic polyurethane (TPU) microcellular composite fibers via an extrusion foaming process using supercritical CO2 as a blowing agent. Results showed that by employing organically modified montmorillonite clay nanoparticles (CloisiteTR 20A) in the matrix at an optimal concentration of about 1.0 wt%, the nucleation rate of foaming was enhanced, thus resulting in the formation of small bubbles in the extruded fibers. Cell sizes as low as several microns or even submicron and fiber diameters less than 30 μm were obtained in the present study. When processed with 0.5 wt% of a slip agent (Oleamide TR121), the extruded TPU fiber foams exhibited fewer cells near the fiber surface. Mechanical studies showed that the tensile modulus per mass based on the initial slope of the stress–strain curve remained almost the same for both unstretched and stretched fibers with or without foaming. However, the yield stress and the maximum tensile load at an equal mass basis were lower for fibers with foaming. POLYM. ENG. SCI., 53:2360–2369, 2013. © 2013 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.23495 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520930797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A348330629</galeid><sourcerecordid>A348330629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6115-302805b0978e6148a84c1fa3d57664dada07f27848b68203969d75ac8248641f3</originalsourceid><addsrcrecordid>eNp1kl9v0zAUxSMEEmXwwDeIhJBAWjr_t_O4TaObVEYFQ3u0bhIn9UjjYCds_fa4tAyKiizZkvU7xz733iR5jdEUI0ROetNNCWU5f5JMMGcqI4Kyp8kEIUoyqpR6nrwI4Q5FlvJ8kixvlsavXN9CGGyZ9q5dj94MS-hMurKld6Vp27EFn9a2MD6kPyykYeyNL72NCmjTEnzhurSy7sFWJi0gmCo1D4Mfg433tYOV7ZqXybMa2mBe7c6j5OuHi5vzy2z-aXZ1fjrPSoExzygiCvEC5VIZgZkCxUpcA624FIJVUAGSNZGKqUIogmgu8kpyKBVhSjBc06Pk3da39-77aMKgVzZsQsREbgwac4JyimQuI_rmH_TOjb6Lv9OY5fE5oTj-QzXQGm272g0eyo2pPqVMUYoEySOVHaAa0xkPretMbeP1Hj89wMdVmVj2g4L3e4LIDLHIDYwh6Ksvn_fZ47_YIvahMyFuwTbLIWwlh6xju0Pwpta9tyvwa42R3kyVjlOlf01VZN_uagYhNr_20JU2PAqIzDGTfMOdbLn7mGP9f0O9uLj-7byroA0x2KMC_DctJJVc317P9OLydj5bLM70R_oTfLbnkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496646851</pqid></control><display><type>article</type><title>Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dai, Chenglong ; Zhang, Cailiang ; Huang, Wenyi ; Chang, Kung-Chin ; Lee, Ly James</creator><creatorcontrib>Dai, Chenglong ; Zhang, Cailiang ; Huang, Wenyi ; Chang, Kung-Chin ; Lee, Ly James</creatorcontrib><description>This study aims to develop, for the first time, thermoplastic polyurethane (TPU) microcellular composite fibers via an extrusion foaming process using supercritical CO2 as a blowing agent. Results showed that by employing organically modified montmorillonite clay nanoparticles (CloisiteTR 20A) in the matrix at an optimal concentration of about 1.0 wt%, the nucleation rate of foaming was enhanced, thus resulting in the formation of small bubbles in the extruded fibers. Cell sizes as low as several microns or even submicron and fiber diameters less than 30 μm were obtained in the present study. When processed with 0.5 wt% of a slip agent (Oleamide TR121), the extruded TPU fiber foams exhibited fewer cells near the fiber surface. Mechanical studies showed that the tensile modulus per mass based on the initial slope of the stress–strain curve remained almost the same for both unstretched and stretched fibers with or without foaming. However, the yield stress and the maximum tensile load at an equal mass basis were lower for fibers with foaming. POLYM. ENG. SCI., 53:2360–2369, 2013. © 2013 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.23495</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Carbon dioxide ; Composites ; Composition ; Exact sciences and technology ; Extrusion ; Fibers ; Fibers and threads ; Foaming ; Foams ; Forms of application and semi-finished materials ; Nanoparticles ; Plastics ; Polymer industry, paints, wood ; Polyurethane ; Polyurethanes ; Production processes ; Stress strain curves ; Stress-strain relationships ; Technology of polymers ; Thermoplastics ; Urethane thermoplastic elastomers ; Yield stress</subject><ispartof>Polymer engineering and science, 2013-11, Vol.53 (11), p.2360-2369</ispartof><rights>Copyright © 2013 Society of Plastics Engineers</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2013 Society of Plastics Engineers, Inc.</rights><rights>Copyright Blackwell Publishing Ltd. Nov 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6115-302805b0978e6148a84c1fa3d57664dada07f27848b68203969d75ac8248641f3</citedby><cites>FETCH-LOGICAL-c6115-302805b0978e6148a84c1fa3d57664dada07f27848b68203969d75ac8248641f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.23495$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.23495$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27914755$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Chenglong</creatorcontrib><creatorcontrib>Zhang, Cailiang</creatorcontrib><creatorcontrib>Huang, Wenyi</creatorcontrib><creatorcontrib>Chang, Kung-Chin</creatorcontrib><creatorcontrib>Lee, Ly James</creatorcontrib><title>Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>This study aims to develop, for the first time, thermoplastic polyurethane (TPU) microcellular composite fibers via an extrusion foaming process using supercritical CO2 as a blowing agent. Results showed that by employing organically modified montmorillonite clay nanoparticles (CloisiteTR 20A) in the matrix at an optimal concentration of about 1.0 wt%, the nucleation rate of foaming was enhanced, thus resulting in the formation of small bubbles in the extruded fibers. Cell sizes as low as several microns or even submicron and fiber diameters less than 30 μm were obtained in the present study. When processed with 0.5 wt% of a slip agent (Oleamide TR121), the extruded TPU fiber foams exhibited fewer cells near the fiber surface. Mechanical studies showed that the tensile modulus per mass based on the initial slope of the stress–strain curve remained almost the same for both unstretched and stretched fibers with or without foaming. However, the yield stress and the maximum tensile load at an equal mass basis were lower for fibers with foaming. POLYM. ENG. SCI., 53:2360–2369, 2013. © 2013 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Carbon dioxide</subject><subject>Composites</subject><subject>Composition</subject><subject>Exact sciences and technology</subject><subject>Extrusion</subject><subject>Fibers</subject><subject>Fibers and threads</subject><subject>Foaming</subject><subject>Foams</subject><subject>Forms of application and semi-finished materials</subject><subject>Nanoparticles</subject><subject>Plastics</subject><subject>Polymer industry, paints, wood</subject><subject>Polyurethane</subject><subject>Polyurethanes</subject><subject>Production processes</subject><subject>Stress strain curves</subject><subject>Stress-strain relationships</subject><subject>Technology of polymers</subject><subject>Thermoplastics</subject><subject>Urethane thermoplastic elastomers</subject><subject>Yield stress</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kl9v0zAUxSMEEmXwwDeIhJBAWjr_t_O4TaObVEYFQ3u0bhIn9UjjYCds_fa4tAyKiizZkvU7xz733iR5jdEUI0ROetNNCWU5f5JMMGcqI4Kyp8kEIUoyqpR6nrwI4Q5FlvJ8kixvlsavXN9CGGyZ9q5dj94MS-hMurKld6Vp27EFn9a2MD6kPyykYeyNL72NCmjTEnzhurSy7sFWJi0gmCo1D4Mfg433tYOV7ZqXybMa2mBe7c6j5OuHi5vzy2z-aXZ1fjrPSoExzygiCvEC5VIZgZkCxUpcA624FIJVUAGSNZGKqUIogmgu8kpyKBVhSjBc06Pk3da39-77aMKgVzZsQsREbgwac4JyimQuI_rmH_TOjb6Lv9OY5fE5oTj-QzXQGm272g0eyo2pPqVMUYoEySOVHaAa0xkPretMbeP1Hj89wMdVmVj2g4L3e4LIDLHIDYwh6Ksvn_fZ47_YIvahMyFuwTbLIWwlh6xju0Pwpta9tyvwa42R3kyVjlOlf01VZN_uagYhNr_20JU2PAqIzDGTfMOdbLn7mGP9f0O9uLj-7byroA0x2KMC_DctJJVc317P9OLydj5bLM70R_oTfLbnkA</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Dai, Chenglong</creator><creator>Zhang, Cailiang</creator><creator>Huang, Wenyi</creator><creator>Chang, Kung-Chin</creator><creator>Lee, Ly James</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Society of Plastics Engineers, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201311</creationdate><title>Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming</title><author>Dai, Chenglong ; Zhang, Cailiang ; Huang, Wenyi ; Chang, Kung-Chin ; Lee, Ly James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6115-302805b0978e6148a84c1fa3d57664dada07f27848b68203969d75ac8248641f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Carbon dioxide</topic><topic>Composites</topic><topic>Composition</topic><topic>Exact sciences and technology</topic><topic>Extrusion</topic><topic>Fibers</topic><topic>Fibers and threads</topic><topic>Foaming</topic><topic>Foams</topic><topic>Forms of application and semi-finished materials</topic><topic>Nanoparticles</topic><topic>Plastics</topic><topic>Polymer industry, paints, wood</topic><topic>Polyurethane</topic><topic>Polyurethanes</topic><topic>Production processes</topic><topic>Stress strain curves</topic><topic>Stress-strain relationships</topic><topic>Technology of polymers</topic><topic>Thermoplastics</topic><topic>Urethane thermoplastic elastomers</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Chenglong</creatorcontrib><creatorcontrib>Zhang, Cailiang</creatorcontrib><creatorcontrib>Huang, Wenyi</creatorcontrib><creatorcontrib>Chang, Kung-Chin</creatorcontrib><creatorcontrib>Lee, Ly James</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Chenglong</au><au>Zhang, Cailiang</au><au>Huang, Wenyi</au><au>Chang, Kung-Chin</au><au>Lee, Ly James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2013-11</date><risdate>2013</risdate><volume>53</volume><issue>11</issue><spage>2360</spage><epage>2369</epage><pages>2360-2369</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>This study aims to develop, for the first time, thermoplastic polyurethane (TPU) microcellular composite fibers via an extrusion foaming process using supercritical CO2 as a blowing agent. Results showed that by employing organically modified montmorillonite clay nanoparticles (CloisiteTR 20A) in the matrix at an optimal concentration of about 1.0 wt%, the nucleation rate of foaming was enhanced, thus resulting in the formation of small bubbles in the extruded fibers. Cell sizes as low as several microns or even submicron and fiber diameters less than 30 μm were obtained in the present study. When processed with 0.5 wt% of a slip agent (Oleamide TR121), the extruded TPU fiber foams exhibited fewer cells near the fiber surface. Mechanical studies showed that the tensile modulus per mass based on the initial slope of the stress–strain curve remained almost the same for both unstretched and stretched fibers with or without foaming. However, the yield stress and the maximum tensile load at an equal mass basis were lower for fibers with foaming. POLYM. ENG. SCI., 53:2360–2369, 2013. © 2013 Society of Plastics Engineers</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pen.23495</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2013-11, Vol.53 (11), p.2360-2369 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520930797 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Carbon dioxide Composites Composition Exact sciences and technology Extrusion Fibers Fibers and threads Foaming Foams Forms of application and semi-finished materials Nanoparticles Plastics Polymer industry, paints, wood Polyurethane Polyurethanes Production processes Stress strain curves Stress-strain relationships Technology of polymers Thermoplastics Urethane thermoplastic elastomers Yield stress |
title | Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoplastic%20polyurethane%20microcellular%20fibers%20via%20supercritical%20carbon%20dioxide%20based%20extrusion%20foaming&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Dai,%20Chenglong&rft.date=2013-11&rft.volume=53&rft.issue=11&rft.spage=2360&rft.epage=2369&rft.pages=2360-2369&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.23495&rft_dat=%3Cgale_proqu%3EA348330629%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1496646851&rft_id=info:pmid/&rft_galeid=A348330629&rfr_iscdi=true |