Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming

This study aims to develop, for the first time, thermoplastic polyurethane (TPU) microcellular composite fibers via an extrusion foaming process using supercritical CO2 as a blowing agent. Results showed that by employing organically modified montmorillonite clay nanoparticles (CloisiteTR 20A) in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2013-11, Vol.53 (11), p.2360-2369
Hauptverfasser: Dai, Chenglong, Zhang, Cailiang, Huang, Wenyi, Chang, Kung-Chin, Lee, Ly James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2369
container_issue 11
container_start_page 2360
container_title Polymer engineering and science
container_volume 53
creator Dai, Chenglong
Zhang, Cailiang
Huang, Wenyi
Chang, Kung-Chin
Lee, Ly James
description This study aims to develop, for the first time, thermoplastic polyurethane (TPU) microcellular composite fibers via an extrusion foaming process using supercritical CO2 as a blowing agent. Results showed that by employing organically modified montmorillonite clay nanoparticles (CloisiteTR 20A) in the matrix at an optimal concentration of about 1.0 wt%, the nucleation rate of foaming was enhanced, thus resulting in the formation of small bubbles in the extruded fibers. Cell sizes as low as several microns or even submicron and fiber diameters less than 30 μm were obtained in the present study. When processed with 0.5 wt% of a slip agent (Oleamide TR121), the extruded TPU fiber foams exhibited fewer cells near the fiber surface. Mechanical studies showed that the tensile modulus per mass based on the initial slope of the stress–strain curve remained almost the same for both unstretched and stretched fibers with or without foaming. However, the yield stress and the maximum tensile load at an equal mass basis were lower for fibers with foaming. POLYM. ENG. SCI., 53:2360–2369, 2013. © 2013 Society of Plastics Engineers
doi_str_mv 10.1002/pen.23495
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520930797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A348330629</galeid><sourcerecordid>A348330629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6115-302805b0978e6148a84c1fa3d57664dada07f27848b68203969d75ac8248641f3</originalsourceid><addsrcrecordid>eNp1kl9v0zAUxSMEEmXwwDeIhJBAWjr_t_O4TaObVEYFQ3u0bhIn9UjjYCds_fa4tAyKiizZkvU7xz733iR5jdEUI0ROetNNCWU5f5JMMGcqI4Kyp8kEIUoyqpR6nrwI4Q5FlvJ8kixvlsavXN9CGGyZ9q5dj94MS-hMurKld6Vp27EFn9a2MD6kPyykYeyNL72NCmjTEnzhurSy7sFWJi0gmCo1D4Mfg433tYOV7ZqXybMa2mBe7c6j5OuHi5vzy2z-aXZ1fjrPSoExzygiCvEC5VIZgZkCxUpcA624FIJVUAGSNZGKqUIogmgu8kpyKBVhSjBc06Pk3da39-77aMKgVzZsQsREbgwac4JyimQuI_rmH_TOjb6Lv9OY5fE5oTj-QzXQGm272g0eyo2pPqVMUYoEySOVHaAa0xkPretMbeP1Hj89wMdVmVj2g4L3e4LIDLHIDYwh6Ksvn_fZ47_YIvahMyFuwTbLIWwlh6xju0Pwpta9tyvwa42R3kyVjlOlf01VZN_uagYhNr_20JU2PAqIzDGTfMOdbLn7mGP9f0O9uLj-7byroA0x2KMC_DctJJVc317P9OLydj5bLM70R_oTfLbnkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496646851</pqid></control><display><type>article</type><title>Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dai, Chenglong ; Zhang, Cailiang ; Huang, Wenyi ; Chang, Kung-Chin ; Lee, Ly James</creator><creatorcontrib>Dai, Chenglong ; Zhang, Cailiang ; Huang, Wenyi ; Chang, Kung-Chin ; Lee, Ly James</creatorcontrib><description>This study aims to develop, for the first time, thermoplastic polyurethane (TPU) microcellular composite fibers via an extrusion foaming process using supercritical CO2 as a blowing agent. Results showed that by employing organically modified montmorillonite clay nanoparticles (CloisiteTR 20A) in the matrix at an optimal concentration of about 1.0 wt%, the nucleation rate of foaming was enhanced, thus resulting in the formation of small bubbles in the extruded fibers. Cell sizes as low as several microns or even submicron and fiber diameters less than 30 μm were obtained in the present study. When processed with 0.5 wt% of a slip agent (Oleamide TR121), the extruded TPU fiber foams exhibited fewer cells near the fiber surface. Mechanical studies showed that the tensile modulus per mass based on the initial slope of the stress–strain curve remained almost the same for both unstretched and stretched fibers with or without foaming. However, the yield stress and the maximum tensile load at an equal mass basis were lower for fibers with foaming. POLYM. ENG. SCI., 53:2360–2369, 2013. © 2013 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.23495</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Carbon dioxide ; Composites ; Composition ; Exact sciences and technology ; Extrusion ; Fibers ; Fibers and threads ; Foaming ; Foams ; Forms of application and semi-finished materials ; Nanoparticles ; Plastics ; Polymer industry, paints, wood ; Polyurethane ; Polyurethanes ; Production processes ; Stress strain curves ; Stress-strain relationships ; Technology of polymers ; Thermoplastics ; Urethane thermoplastic elastomers ; Yield stress</subject><ispartof>Polymer engineering and science, 2013-11, Vol.53 (11), p.2360-2369</ispartof><rights>Copyright © 2013 Society of Plastics Engineers</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2013 Society of Plastics Engineers, Inc.</rights><rights>Copyright Blackwell Publishing Ltd. Nov 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6115-302805b0978e6148a84c1fa3d57664dada07f27848b68203969d75ac8248641f3</citedby><cites>FETCH-LOGICAL-c6115-302805b0978e6148a84c1fa3d57664dada07f27848b68203969d75ac8248641f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.23495$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.23495$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27914755$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Chenglong</creatorcontrib><creatorcontrib>Zhang, Cailiang</creatorcontrib><creatorcontrib>Huang, Wenyi</creatorcontrib><creatorcontrib>Chang, Kung-Chin</creatorcontrib><creatorcontrib>Lee, Ly James</creatorcontrib><title>Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>This study aims to develop, for the first time, thermoplastic polyurethane (TPU) microcellular composite fibers via an extrusion foaming process using supercritical CO2 as a blowing agent. Results showed that by employing organically modified montmorillonite clay nanoparticles (CloisiteTR 20A) in the matrix at an optimal concentration of about 1.0 wt%, the nucleation rate of foaming was enhanced, thus resulting in the formation of small bubbles in the extruded fibers. Cell sizes as low as several microns or even submicron and fiber diameters less than 30 μm were obtained in the present study. When processed with 0.5 wt% of a slip agent (Oleamide TR121), the extruded TPU fiber foams exhibited fewer cells near the fiber surface. Mechanical studies showed that the tensile modulus per mass based on the initial slope of the stress–strain curve remained almost the same for both unstretched and stretched fibers with or without foaming. However, the yield stress and the maximum tensile load at an equal mass basis were lower for fibers with foaming. POLYM. ENG. SCI., 53:2360–2369, 2013. © 2013 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Carbon dioxide</subject><subject>Composites</subject><subject>Composition</subject><subject>Exact sciences and technology</subject><subject>Extrusion</subject><subject>Fibers</subject><subject>Fibers and threads</subject><subject>Foaming</subject><subject>Foams</subject><subject>Forms of application and semi-finished materials</subject><subject>Nanoparticles</subject><subject>Plastics</subject><subject>Polymer industry, paints, wood</subject><subject>Polyurethane</subject><subject>Polyurethanes</subject><subject>Production processes</subject><subject>Stress strain curves</subject><subject>Stress-strain relationships</subject><subject>Technology of polymers</subject><subject>Thermoplastics</subject><subject>Urethane thermoplastic elastomers</subject><subject>Yield stress</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kl9v0zAUxSMEEmXwwDeIhJBAWjr_t_O4TaObVEYFQ3u0bhIn9UjjYCds_fa4tAyKiizZkvU7xz733iR5jdEUI0ROetNNCWU5f5JMMGcqI4Kyp8kEIUoyqpR6nrwI4Q5FlvJ8kixvlsavXN9CGGyZ9q5dj94MS-hMurKld6Vp27EFn9a2MD6kPyykYeyNL72NCmjTEnzhurSy7sFWJi0gmCo1D4Mfg433tYOV7ZqXybMa2mBe7c6j5OuHi5vzy2z-aXZ1fjrPSoExzygiCvEC5VIZgZkCxUpcA624FIJVUAGSNZGKqUIogmgu8kpyKBVhSjBc06Pk3da39-77aMKgVzZsQsREbgwac4JyimQuI_rmH_TOjb6Lv9OY5fE5oTj-QzXQGm272g0eyo2pPqVMUYoEySOVHaAa0xkPretMbeP1Hj89wMdVmVj2g4L3e4LIDLHIDYwh6Ksvn_fZ47_YIvahMyFuwTbLIWwlh6xju0Pwpta9tyvwa42R3kyVjlOlf01VZN_uagYhNr_20JU2PAqIzDGTfMOdbLn7mGP9f0O9uLj-7byroA0x2KMC_DctJJVc317P9OLydj5bLM70R_oTfLbnkA</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Dai, Chenglong</creator><creator>Zhang, Cailiang</creator><creator>Huang, Wenyi</creator><creator>Chang, Kung-Chin</creator><creator>Lee, Ly James</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Society of Plastics Engineers, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201311</creationdate><title>Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming</title><author>Dai, Chenglong ; Zhang, Cailiang ; Huang, Wenyi ; Chang, Kung-Chin ; Lee, Ly James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6115-302805b0978e6148a84c1fa3d57664dada07f27848b68203969d75ac8248641f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Carbon dioxide</topic><topic>Composites</topic><topic>Composition</topic><topic>Exact sciences and technology</topic><topic>Extrusion</topic><topic>Fibers</topic><topic>Fibers and threads</topic><topic>Foaming</topic><topic>Foams</topic><topic>Forms of application and semi-finished materials</topic><topic>Nanoparticles</topic><topic>Plastics</topic><topic>Polymer industry, paints, wood</topic><topic>Polyurethane</topic><topic>Polyurethanes</topic><topic>Production processes</topic><topic>Stress strain curves</topic><topic>Stress-strain relationships</topic><topic>Technology of polymers</topic><topic>Thermoplastics</topic><topic>Urethane thermoplastic elastomers</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Chenglong</creatorcontrib><creatorcontrib>Zhang, Cailiang</creatorcontrib><creatorcontrib>Huang, Wenyi</creatorcontrib><creatorcontrib>Chang, Kung-Chin</creatorcontrib><creatorcontrib>Lee, Ly James</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Chenglong</au><au>Zhang, Cailiang</au><au>Huang, Wenyi</au><au>Chang, Kung-Chin</au><au>Lee, Ly James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2013-11</date><risdate>2013</risdate><volume>53</volume><issue>11</issue><spage>2360</spage><epage>2369</epage><pages>2360-2369</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>This study aims to develop, for the first time, thermoplastic polyurethane (TPU) microcellular composite fibers via an extrusion foaming process using supercritical CO2 as a blowing agent. Results showed that by employing organically modified montmorillonite clay nanoparticles (CloisiteTR 20A) in the matrix at an optimal concentration of about 1.0 wt%, the nucleation rate of foaming was enhanced, thus resulting in the formation of small bubbles in the extruded fibers. Cell sizes as low as several microns or even submicron and fiber diameters less than 30 μm were obtained in the present study. When processed with 0.5 wt% of a slip agent (Oleamide TR121), the extruded TPU fiber foams exhibited fewer cells near the fiber surface. Mechanical studies showed that the tensile modulus per mass based on the initial slope of the stress–strain curve remained almost the same for both unstretched and stretched fibers with or without foaming. However, the yield stress and the maximum tensile load at an equal mass basis were lower for fibers with foaming. POLYM. ENG. SCI., 53:2360–2369, 2013. © 2013 Society of Plastics Engineers</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pen.23495</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2013-11, Vol.53 (11), p.2360-2369
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_miscellaneous_1520930797
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Carbon dioxide
Composites
Composition
Exact sciences and technology
Extrusion
Fibers
Fibers and threads
Foaming
Foams
Forms of application and semi-finished materials
Nanoparticles
Plastics
Polymer industry, paints, wood
Polyurethane
Polyurethanes
Production processes
Stress strain curves
Stress-strain relationships
Technology of polymers
Thermoplastics
Urethane thermoplastic elastomers
Yield stress
title Thermoplastic polyurethane microcellular fibers via supercritical carbon dioxide based extrusion foaming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoplastic%20polyurethane%20microcellular%20fibers%20via%20supercritical%20carbon%20dioxide%20based%20extrusion%20foaming&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Dai,%20Chenglong&rft.date=2013-11&rft.volume=53&rft.issue=11&rft.spage=2360&rft.epage=2369&rft.pages=2360-2369&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.23495&rft_dat=%3Cgale_proqu%3EA348330629%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1496646851&rft_id=info:pmid/&rft_galeid=A348330629&rfr_iscdi=true