Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces

ABSTRACT Multi‐junction solar cells offer extremely high power conversion efficiency with minimal semiconductor material usage, and hence are promising for large‐scale electricity generation. However, suppressing optical reflection in the UV regime is particularly challenging due to the lack of adeq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in photovoltaics 2014-03, Vol.22 (3), p.300-307
Hauptverfasser: Yu, Peichen, Chiu, Meng-Yih, Chang, Chia-Hua, Hong, Chung-Yu, Tsai, Yu-Lin, Han, Hau-Vei, Wu, Yu-Rue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 3
container_start_page 300
container_title Progress in photovoltaics
container_volume 22
creator Yu, Peichen
Chiu, Meng-Yih
Chang, Chia-Hua
Hong, Chung-Yu
Tsai, Yu-Lin
Han, Hau-Vei
Wu, Yu-Rue
description ABSTRACT Multi‐junction solar cells offer extremely high power conversion efficiency with minimal semiconductor material usage, and hence are promising for large‐scale electricity generation. However, suppressing optical reflection in the UV regime is particularly challenging due to the lack of adequate dielectric materials. In this work, bio‐inspired antireflective structures are demonstrated on a monolithically grown Ga0.5In0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell, which overcome the limited optical response of reference devices. The fabricated device also exhibits omni‐directional enhancement of photocurrent and power conversion efficiency, offering a viable solution to concentrated illumination with large angles of incidence. A comprehensive design scheme is further developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells. Copyright © 2012 John Wiley & Sons, Ltd. Biologically inspired antireflective structures are incorporated into a monolithically grown In0.5Ga0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell using scalable polystyrene nanosphere lithography. The subwavelength structures exhibit remarkable antireflection in the UV, which is hardly attainable with common thin‐film coatings. Consequently, the nanostructured device shows omni‐directional enhancement of photocurrent and power conversion efficiency because of alleviated current matching. A comprehensive design scheme is also developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells.
doi_str_mv 10.1002/pip.2259
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520929953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3218587461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4649-56c02a010ff31b5d42543ac9c954fbd70a2402ec458168c805bb9919bffd1df63</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosoqKvgTyiI4KWapE3bHP1chUUFVxQvIU0TN2s2qZmWdf-9LS57EDzNHB6eeeeNoiOMzjBC5LwxzRkhlG1FexgxlmDK3raHPSdJwRjdjfYB5gjhomT5XvQ-9UsRaohn5mOWKK2NNMrJVbzobGuSeedka7yLwVsRYqmshXhp2llcGW_9h5HC2lVsHDQmqDp2wnnoghZSwUG0o4UFdbieo-jl9mZ6dZdMHsf3VxeTRGZ5xhKaS0QEwkjrFFe0zgjNUiGZZDTTVV0gQTJElMxoifNSlohWFWOYVVrXuNZ5OopOf71N8F-dgpYvDAxJhVO-A44pQYz0r6c9evwHnfsuuD4dxxkrcY_22EYogwcISvMmmIUIK44RH0rmfcl8KLlHT9ZCAX0VOggnDWx4UuKCYjQcTn65pbFq9a-PP90_rb1r3kCrvje8CJ88L9KC8teHMSfX0zy9fE55mf4AOl2aFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498115295</pqid></control><display><type>article</type><title>Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces</title><source>Wiley Online Library All Journals</source><creator>Yu, Peichen ; Chiu, Meng-Yih ; Chang, Chia-Hua ; Hong, Chung-Yu ; Tsai, Yu-Lin ; Han, Hau-Vei ; Wu, Yu-Rue</creator><creatorcontrib>Yu, Peichen ; Chiu, Meng-Yih ; Chang, Chia-Hua ; Hong, Chung-Yu ; Tsai, Yu-Lin ; Han, Hau-Vei ; Wu, Yu-Rue</creatorcontrib><description>ABSTRACT Multi‐junction solar cells offer extremely high power conversion efficiency with minimal semiconductor material usage, and hence are promising for large‐scale electricity generation. However, suppressing optical reflection in the UV regime is particularly challenging due to the lack of adequate dielectric materials. In this work, bio‐inspired antireflective structures are demonstrated on a monolithically grown Ga0.5In0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell, which overcome the limited optical response of reference devices. The fabricated device also exhibits omni‐directional enhancement of photocurrent and power conversion efficiency, offering a viable solution to concentrated illumination with large angles of incidence. A comprehensive design scheme is further developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells. Copyright © 2012 John Wiley &amp; Sons, Ltd. Biologically inspired antireflective structures are incorporated into a monolithically grown In0.5Ga0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell using scalable polystyrene nanosphere lithography. The subwavelength structures exhibit remarkable antireflection in the UV, which is hardly attainable with common thin‐film coatings. Consequently, the nanostructured device shows omni‐directional enhancement of photocurrent and power conversion efficiency because of alleviated current matching. A comprehensive design scheme is also developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.2259</identifier><identifier>CODEN: PPHOED</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; biomimetic nanostructures ; Devices ; Energy ; Energy conversion efficiency ; Exact sciences and technology ; Nanostructure ; Natural energy ; Photocurrent ; Photoelectric effect ; photovoltaic ; Photovoltaic cells ; Photovoltaic conversion ; Reflectance ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; sub-wavelength structures</subject><ispartof>Progress in photovoltaics, 2014-03, Vol.22 (3), p.300-307</ispartof><rights>Copyright © 2012 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4649-56c02a010ff31b5d42543ac9c954fbd70a2402ec458168c805bb9919bffd1df63</citedby><cites>FETCH-LOGICAL-c4649-56c02a010ff31b5d42543ac9c954fbd70a2402ec458168c805bb9919bffd1df63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpip.2259$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpip.2259$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28175103$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Peichen</creatorcontrib><creatorcontrib>Chiu, Meng-Yih</creatorcontrib><creatorcontrib>Chang, Chia-Hua</creatorcontrib><creatorcontrib>Hong, Chung-Yu</creatorcontrib><creatorcontrib>Tsai, Yu-Lin</creatorcontrib><creatorcontrib>Han, Hau-Vei</creatorcontrib><creatorcontrib>Wu, Yu-Rue</creatorcontrib><title>Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces</title><title>Progress in photovoltaics</title><addtitle>Prog. Photovolt: Res. Appl</addtitle><description>ABSTRACT Multi‐junction solar cells offer extremely high power conversion efficiency with minimal semiconductor material usage, and hence are promising for large‐scale electricity generation. However, suppressing optical reflection in the UV regime is particularly challenging due to the lack of adequate dielectric materials. In this work, bio‐inspired antireflective structures are demonstrated on a monolithically grown Ga0.5In0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell, which overcome the limited optical response of reference devices. The fabricated device also exhibits omni‐directional enhancement of photocurrent and power conversion efficiency, offering a viable solution to concentrated illumination with large angles of incidence. A comprehensive design scheme is further developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells. Copyright © 2012 John Wiley &amp; Sons, Ltd. Biologically inspired antireflective structures are incorporated into a monolithically grown In0.5Ga0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell using scalable polystyrene nanosphere lithography. The subwavelength structures exhibit remarkable antireflection in the UV, which is hardly attainable with common thin‐film coatings. Consequently, the nanostructured device shows omni‐directional enhancement of photocurrent and power conversion efficiency because of alleviated current matching. A comprehensive design scheme is also developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells.</description><subject>Applied sciences</subject><subject>biomimetic nanostructures</subject><subject>Devices</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Exact sciences and technology</subject><subject>Nanostructure</subject><subject>Natural energy</subject><subject>Photocurrent</subject><subject>Photoelectric effect</subject><subject>photovoltaic</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Reflectance</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>sub-wavelength structures</subject><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhosoqKvgTyiI4KWapE3bHP1chUUFVxQvIU0TN2s2qZmWdf-9LS57EDzNHB6eeeeNoiOMzjBC5LwxzRkhlG1FexgxlmDK3raHPSdJwRjdjfYB5gjhomT5XvQ-9UsRaohn5mOWKK2NNMrJVbzobGuSeedka7yLwVsRYqmshXhp2llcGW_9h5HC2lVsHDQmqDp2wnnoghZSwUG0o4UFdbieo-jl9mZ6dZdMHsf3VxeTRGZ5xhKaS0QEwkjrFFe0zgjNUiGZZDTTVV0gQTJElMxoifNSlohWFWOYVVrXuNZ5OopOf71N8F-dgpYvDAxJhVO-A44pQYz0r6c9evwHnfsuuD4dxxkrcY_22EYogwcISvMmmIUIK44RH0rmfcl8KLlHT9ZCAX0VOggnDWx4UuKCYjQcTn65pbFq9a-PP90_rb1r3kCrvje8CJ88L9KC8teHMSfX0zy9fE55mf4AOl2aFA</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Yu, Peichen</creator><creator>Chiu, Meng-Yih</creator><creator>Chang, Chia-Hua</creator><creator>Hong, Chung-Yu</creator><creator>Tsai, Yu-Lin</creator><creator>Han, Hau-Vei</creator><creator>Wu, Yu-Rue</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201403</creationdate><title>Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces</title><author>Yu, Peichen ; Chiu, Meng-Yih ; Chang, Chia-Hua ; Hong, Chung-Yu ; Tsai, Yu-Lin ; Han, Hau-Vei ; Wu, Yu-Rue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4649-56c02a010ff31b5d42543ac9c954fbd70a2402ec458168c805bb9919bffd1df63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>biomimetic nanostructures</topic><topic>Devices</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Exact sciences and technology</topic><topic>Nanostructure</topic><topic>Natural energy</topic><topic>Photocurrent</topic><topic>Photoelectric effect</topic><topic>photovoltaic</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Reflectance</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>sub-wavelength structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Peichen</creatorcontrib><creatorcontrib>Chiu, Meng-Yih</creatorcontrib><creatorcontrib>Chang, Chia-Hua</creatorcontrib><creatorcontrib>Hong, Chung-Yu</creatorcontrib><creatorcontrib>Tsai, Yu-Lin</creatorcontrib><creatorcontrib>Han, Hau-Vei</creatorcontrib><creatorcontrib>Wu, Yu-Rue</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Peichen</au><au>Chiu, Meng-Yih</au><au>Chang, Chia-Hua</au><au>Hong, Chung-Yu</au><au>Tsai, Yu-Lin</au><au>Han, Hau-Vei</au><au>Wu, Yu-Rue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces</atitle><jtitle>Progress in photovoltaics</jtitle><addtitle>Prog. Photovolt: Res. Appl</addtitle><date>2014-03</date><risdate>2014</risdate><volume>22</volume><issue>3</issue><spage>300</spage><epage>307</epage><pages>300-307</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><coden>PPHOED</coden><abstract>ABSTRACT Multi‐junction solar cells offer extremely high power conversion efficiency with minimal semiconductor material usage, and hence are promising for large‐scale electricity generation. However, suppressing optical reflection in the UV regime is particularly challenging due to the lack of adequate dielectric materials. In this work, bio‐inspired antireflective structures are demonstrated on a monolithically grown Ga0.5In0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell, which overcome the limited optical response of reference devices. The fabricated device also exhibits omni‐directional enhancement of photocurrent and power conversion efficiency, offering a viable solution to concentrated illumination with large angles of incidence. A comprehensive design scheme is further developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells. Copyright © 2012 John Wiley &amp; Sons, Ltd. Biologically inspired antireflective structures are incorporated into a monolithically grown In0.5Ga0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell using scalable polystyrene nanosphere lithography. The subwavelength structures exhibit remarkable antireflection in the UV, which is hardly attainable with common thin‐film coatings. Consequently, the nanostructured device shows omni‐directional enhancement of photocurrent and power conversion efficiency because of alleviated current matching. A comprehensive design scheme is also developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pip.2259</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1062-7995
ispartof Progress in photovoltaics, 2014-03, Vol.22 (3), p.300-307
issn 1062-7995
1099-159X
language eng
recordid cdi_proquest_miscellaneous_1520929953
source Wiley Online Library All Journals
subjects Applied sciences
biomimetic nanostructures
Devices
Energy
Energy conversion efficiency
Exact sciences and technology
Nanostructure
Natural energy
Photocurrent
Photoelectric effect
photovoltaic
Photovoltaic cells
Photovoltaic conversion
Reflectance
Solar cells
Solar cells. Photoelectrochemical cells
Solar energy
sub-wavelength structures
title Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20high-efficiency%20multi-junction%20solar%20cells%20with%20biologically%20inspired%20nanosurfaces&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Yu,%20Peichen&rft.date=2014-03&rft.volume=22&rft.issue=3&rft.spage=300&rft.epage=307&rft.pages=300-307&rft.issn=1062-7995&rft.eissn=1099-159X&rft.coden=PPHOED&rft_id=info:doi/10.1002/pip.2259&rft_dat=%3Cproquest_cross%3E3218587461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1498115295&rft_id=info:pmid/&rfr_iscdi=true