Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces
ABSTRACT Multi‐junction solar cells offer extremely high power conversion efficiency with minimal semiconductor material usage, and hence are promising for large‐scale electricity generation. However, suppressing optical reflection in the UV regime is particularly challenging due to the lack of adeq...
Gespeichert in:
Veröffentlicht in: | Progress in photovoltaics 2014-03, Vol.22 (3), p.300-307 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 307 |
---|---|
container_issue | 3 |
container_start_page | 300 |
container_title | Progress in photovoltaics |
container_volume | 22 |
creator | Yu, Peichen Chiu, Meng-Yih Chang, Chia-Hua Hong, Chung-Yu Tsai, Yu-Lin Han, Hau-Vei Wu, Yu-Rue |
description | ABSTRACT
Multi‐junction solar cells offer extremely high power conversion efficiency with minimal semiconductor material usage, and hence are promising for large‐scale electricity generation. However, suppressing optical reflection in the UV regime is particularly challenging due to the lack of adequate dielectric materials. In this work, bio‐inspired antireflective structures are demonstrated on a monolithically grown Ga0.5In0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell, which overcome the limited optical response of reference devices. The fabricated device also exhibits omni‐directional enhancement of photocurrent and power conversion efficiency, offering a viable solution to concentrated illumination with large angles of incidence. A comprehensive design scheme is further developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells. Copyright © 2012 John Wiley & Sons, Ltd.
Biologically inspired antireflective structures are incorporated into a monolithically grown In0.5Ga0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell using scalable polystyrene nanosphere lithography. The subwavelength structures exhibit remarkable antireflection in the UV, which is hardly attainable with common thin‐film coatings. Consequently, the nanostructured device shows omni‐directional enhancement of photocurrent and power conversion efficiency because of alleviated current matching. A comprehensive design scheme is also developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells. |
doi_str_mv | 10.1002/pip.2259 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520929953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3218587461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4649-56c02a010ff31b5d42543ac9c954fbd70a2402ec458168c805bb9919bffd1df63</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhosoqKvgTyiI4KWapE3bHP1chUUFVxQvIU0TN2s2qZmWdf-9LS57EDzNHB6eeeeNoiOMzjBC5LwxzRkhlG1FexgxlmDK3raHPSdJwRjdjfYB5gjhomT5XvQ-9UsRaohn5mOWKK2NNMrJVbzobGuSeedka7yLwVsRYqmshXhp2llcGW_9h5HC2lVsHDQmqDp2wnnoghZSwUG0o4UFdbieo-jl9mZ6dZdMHsf3VxeTRGZ5xhKaS0QEwkjrFFe0zgjNUiGZZDTTVV0gQTJElMxoifNSlohWFWOYVVrXuNZ5OopOf71N8F-dgpYvDAxJhVO-A44pQYz0r6c9evwHnfsuuD4dxxkrcY_22EYogwcISvMmmIUIK44RH0rmfcl8KLlHT9ZCAX0VOggnDWx4UuKCYjQcTn65pbFq9a-PP90_rb1r3kCrvje8CJ88L9KC8teHMSfX0zy9fE55mf4AOl2aFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498115295</pqid></control><display><type>article</type><title>Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces</title><source>Wiley Online Library All Journals</source><creator>Yu, Peichen ; Chiu, Meng-Yih ; Chang, Chia-Hua ; Hong, Chung-Yu ; Tsai, Yu-Lin ; Han, Hau-Vei ; Wu, Yu-Rue</creator><creatorcontrib>Yu, Peichen ; Chiu, Meng-Yih ; Chang, Chia-Hua ; Hong, Chung-Yu ; Tsai, Yu-Lin ; Han, Hau-Vei ; Wu, Yu-Rue</creatorcontrib><description>ABSTRACT
Multi‐junction solar cells offer extremely high power conversion efficiency with minimal semiconductor material usage, and hence are promising for large‐scale electricity generation. However, suppressing optical reflection in the UV regime is particularly challenging due to the lack of adequate dielectric materials. In this work, bio‐inspired antireflective structures are demonstrated on a monolithically grown Ga0.5In0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell, which overcome the limited optical response of reference devices. The fabricated device also exhibits omni‐directional enhancement of photocurrent and power conversion efficiency, offering a viable solution to concentrated illumination with large angles of incidence. A comprehensive design scheme is further developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells. Copyright © 2012 John Wiley & Sons, Ltd.
Biologically inspired antireflective structures are incorporated into a monolithically grown In0.5Ga0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell using scalable polystyrene nanosphere lithography. The subwavelength structures exhibit remarkable antireflection in the UV, which is hardly attainable with common thin‐film coatings. Consequently, the nanostructured device shows omni‐directional enhancement of photocurrent and power conversion efficiency because of alleviated current matching. A comprehensive design scheme is also developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells.</description><identifier>ISSN: 1062-7995</identifier><identifier>EISSN: 1099-159X</identifier><identifier>DOI: 10.1002/pip.2259</identifier><identifier>CODEN: PPHOED</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; biomimetic nanostructures ; Devices ; Energy ; Energy conversion efficiency ; Exact sciences and technology ; Nanostructure ; Natural energy ; Photocurrent ; Photoelectric effect ; photovoltaic ; Photovoltaic cells ; Photovoltaic conversion ; Reflectance ; Solar cells ; Solar cells. Photoelectrochemical cells ; Solar energy ; sub-wavelength structures</subject><ispartof>Progress in photovoltaics, 2014-03, Vol.22 (3), p.300-307</ispartof><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4649-56c02a010ff31b5d42543ac9c954fbd70a2402ec458168c805bb9919bffd1df63</citedby><cites>FETCH-LOGICAL-c4649-56c02a010ff31b5d42543ac9c954fbd70a2402ec458168c805bb9919bffd1df63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpip.2259$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpip.2259$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28175103$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Peichen</creatorcontrib><creatorcontrib>Chiu, Meng-Yih</creatorcontrib><creatorcontrib>Chang, Chia-Hua</creatorcontrib><creatorcontrib>Hong, Chung-Yu</creatorcontrib><creatorcontrib>Tsai, Yu-Lin</creatorcontrib><creatorcontrib>Han, Hau-Vei</creatorcontrib><creatorcontrib>Wu, Yu-Rue</creatorcontrib><title>Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces</title><title>Progress in photovoltaics</title><addtitle>Prog. Photovolt: Res. Appl</addtitle><description>ABSTRACT
Multi‐junction solar cells offer extremely high power conversion efficiency with minimal semiconductor material usage, and hence are promising for large‐scale electricity generation. However, suppressing optical reflection in the UV regime is particularly challenging due to the lack of adequate dielectric materials. In this work, bio‐inspired antireflective structures are demonstrated on a monolithically grown Ga0.5In0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell, which overcome the limited optical response of reference devices. The fabricated device also exhibits omni‐directional enhancement of photocurrent and power conversion efficiency, offering a viable solution to concentrated illumination with large angles of incidence. A comprehensive design scheme is further developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells. Copyright © 2012 John Wiley & Sons, Ltd.
Biologically inspired antireflective structures are incorporated into a monolithically grown In0.5Ga0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell using scalable polystyrene nanosphere lithography. The subwavelength structures exhibit remarkable antireflection in the UV, which is hardly attainable with common thin‐film coatings. Consequently, the nanostructured device shows omni‐directional enhancement of photocurrent and power conversion efficiency because of alleviated current matching. A comprehensive design scheme is also developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells.</description><subject>Applied sciences</subject><subject>biomimetic nanostructures</subject><subject>Devices</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Exact sciences and technology</subject><subject>Nanostructure</subject><subject>Natural energy</subject><subject>Photocurrent</subject><subject>Photoelectric effect</subject><subject>photovoltaic</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Reflectance</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>sub-wavelength structures</subject><issn>1062-7995</issn><issn>1099-159X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhosoqKvgTyiI4KWapE3bHP1chUUFVxQvIU0TN2s2qZmWdf-9LS57EDzNHB6eeeeNoiOMzjBC5LwxzRkhlG1FexgxlmDK3raHPSdJwRjdjfYB5gjhomT5XvQ-9UsRaohn5mOWKK2NNMrJVbzobGuSeedka7yLwVsRYqmshXhp2llcGW_9h5HC2lVsHDQmqDp2wnnoghZSwUG0o4UFdbieo-jl9mZ6dZdMHsf3VxeTRGZ5xhKaS0QEwkjrFFe0zgjNUiGZZDTTVV0gQTJElMxoifNSlohWFWOYVVrXuNZ5OopOf71N8F-dgpYvDAxJhVO-A44pQYz0r6c9evwHnfsuuD4dxxkrcY_22EYogwcISvMmmIUIK44RH0rmfcl8KLlHT9ZCAX0VOggnDWx4UuKCYjQcTn65pbFq9a-PP90_rb1r3kCrvje8CJ88L9KC8teHMSfX0zy9fE55mf4AOl2aFA</recordid><startdate>201403</startdate><enddate>201403</enddate><creator>Yu, Peichen</creator><creator>Chiu, Meng-Yih</creator><creator>Chang, Chia-Hua</creator><creator>Hong, Chung-Yu</creator><creator>Tsai, Yu-Lin</creator><creator>Han, Hau-Vei</creator><creator>Wu, Yu-Rue</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201403</creationdate><title>Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces</title><author>Yu, Peichen ; Chiu, Meng-Yih ; Chang, Chia-Hua ; Hong, Chung-Yu ; Tsai, Yu-Lin ; Han, Hau-Vei ; Wu, Yu-Rue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4649-56c02a010ff31b5d42543ac9c954fbd70a2402ec458168c805bb9919bffd1df63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>biomimetic nanostructures</topic><topic>Devices</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Exact sciences and technology</topic><topic>Nanostructure</topic><topic>Natural energy</topic><topic>Photocurrent</topic><topic>Photoelectric effect</topic><topic>photovoltaic</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Reflectance</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>sub-wavelength structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Peichen</creatorcontrib><creatorcontrib>Chiu, Meng-Yih</creatorcontrib><creatorcontrib>Chang, Chia-Hua</creatorcontrib><creatorcontrib>Hong, Chung-Yu</creatorcontrib><creatorcontrib>Tsai, Yu-Lin</creatorcontrib><creatorcontrib>Han, Hau-Vei</creatorcontrib><creatorcontrib>Wu, Yu-Rue</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Progress in photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Peichen</au><au>Chiu, Meng-Yih</au><au>Chang, Chia-Hua</au><au>Hong, Chung-Yu</au><au>Tsai, Yu-Lin</au><au>Han, Hau-Vei</au><au>Wu, Yu-Rue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces</atitle><jtitle>Progress in photovoltaics</jtitle><addtitle>Prog. Photovolt: Res. Appl</addtitle><date>2014-03</date><risdate>2014</risdate><volume>22</volume><issue>3</issue><spage>300</spage><epage>307</epage><pages>300-307</pages><issn>1062-7995</issn><eissn>1099-159X</eissn><coden>PPHOED</coden><abstract>ABSTRACT
Multi‐junction solar cells offer extremely high power conversion efficiency with minimal semiconductor material usage, and hence are promising for large‐scale electricity generation. However, suppressing optical reflection in the UV regime is particularly challenging due to the lack of adequate dielectric materials. In this work, bio‐inspired antireflective structures are demonstrated on a monolithically grown Ga0.5In0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell, which overcome the limited optical response of reference devices. The fabricated device also exhibits omni‐directional enhancement of photocurrent and power conversion efficiency, offering a viable solution to concentrated illumination with large angles of incidence. A comprehensive design scheme is further developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells. Copyright © 2012 John Wiley & Sons, Ltd.
Biologically inspired antireflective structures are incorporated into a monolithically grown In0.5Ga0.5P/In0.01Ga0.99As/Ge triple‐junction solar cell using scalable polystyrene nanosphere lithography. The subwavelength structures exhibit remarkable antireflection in the UV, which is hardly attainable with common thin‐film coatings. Consequently, the nanostructured device shows omni‐directional enhancement of photocurrent and power conversion efficiency because of alleviated current matching. A comprehensive design scheme is also developed to tailor the reflectance spectrum for maximum photocurrent output of tandem cells.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pip.2259</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1062-7995 |
ispartof | Progress in photovoltaics, 2014-03, Vol.22 (3), p.300-307 |
issn | 1062-7995 1099-159X |
language | eng |
recordid | cdi_proquest_miscellaneous_1520929953 |
source | Wiley Online Library All Journals |
subjects | Applied sciences biomimetic nanostructures Devices Energy Energy conversion efficiency Exact sciences and technology Nanostructure Natural energy Photocurrent Photoelectric effect photovoltaic Photovoltaic cells Photovoltaic conversion Reflectance Solar cells Solar cells. Photoelectrochemical cells Solar energy sub-wavelength structures |
title | Towards high-efficiency multi-junction solar cells with biologically inspired nanosurfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20high-efficiency%20multi-junction%20solar%20cells%20with%20biologically%20inspired%20nanosurfaces&rft.jtitle=Progress%20in%20photovoltaics&rft.au=Yu,%20Peichen&rft.date=2014-03&rft.volume=22&rft.issue=3&rft.spage=300&rft.epage=307&rft.pages=300-307&rft.issn=1062-7995&rft.eissn=1099-159X&rft.coden=PPHOED&rft_id=info:doi/10.1002/pip.2259&rft_dat=%3Cproquest_cross%3E3218587461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1498115295&rft_id=info:pmid/&rfr_iscdi=true |