Music and timbre segmentation by recursive constrained K-means clustering
Clustering of features generated of musical sound recordings proved to be beneficial for further classification tasks such as instrument recognition (Ligges and Krey in Comput Stat 26(2):279–291, 2011 ). We propose to use order constrained solutions in K -means clustering to stabilize the results an...
Gespeichert in:
Veröffentlicht in: | Computational statistics 2014-02, Vol.29 (1-2), p.37-50 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 1-2 |
container_start_page | 37 |
container_title | Computational statistics |
container_volume | 29 |
creator | Krey, Sebastian Ligges, Uwe Leisch, Friedrich |
description | Clustering of features generated of musical sound recordings proved to be beneficial for further classification tasks such as instrument recognition (Ligges and Krey in Comput Stat 26(2):279–291,
2011
). We propose to use order constrained solutions in
K
-means clustering to stabilize the results and improve the interpretability of the clustering. With this method a further improvement of the misclassification error in the aforementioned instrument recognition task is possible. Using order constrained
K
-means the musical structure of a whole piece of popular music can be extracted automatically. Visualizing the distances of the feature vectors through a self distance matrix allows for an easy visual verification of the result. For the estimation of the right number of clusters, we propose to calculate the adjusted Rand indices of bootstrap samples of the data and base the decision on the minimum of a robust version of the coefficient of variation. In addition to the average stability (measured through the adjusted Rand index) this approach takes the variation between the different bootstrap samples into account. |
doi_str_mv | 10.1007/s00180-012-0358-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520928569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3219661151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-56fee500bcc489baa30d9eebe895284c092231b388b89d3ec73a29b2c269d3a3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAi5foJNnsJkcpfhQrXnoP2ey0pHSzNdkV_PduWQ8ieBoGnvdl5iHkmsMdB6juMwDXwIALBlJppk7IjJdcMlMqfUpmYArJCijFObnIeQcgRCX4jCzfhhw8dbGhfWjrhDTjtsXYuz50kdZfNKEfUg6fSH0Xc59ciNjQV9aii5n6_ZB7TCFuL8nZxu0zXv3MOVk_Pa4XL2z1_rxcPKyYl4XpmSo3iAqg9r7QpnZOQmMQa9RGCV14MEJIXkuta20aib6STphaeFGOq5NzcjvVHlL3MWDubRuyx_3eReyGbLkSY4VWpRnRmz_orhtSHI-zvDB6FKB5NVJ8onzqck64sYcUWpe-LAd7dGsnt3Z0a49urRozYsrkw_F1TL-a_w19A7f8e9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498272817</pqid></control><display><type>article</type><title>Music and timbre segmentation by recursive constrained K-means clustering</title><source>SpringerLink Journals - AutoHoldings</source><creator>Krey, Sebastian ; Ligges, Uwe ; Leisch, Friedrich</creator><creatorcontrib>Krey, Sebastian ; Ligges, Uwe ; Leisch, Friedrich</creatorcontrib><description>Clustering of features generated of musical sound recordings proved to be beneficial for further classification tasks such as instrument recognition (Ligges and Krey in Comput Stat 26(2):279–291,
2011
). We propose to use order constrained solutions in
K
-means clustering to stabilize the results and improve the interpretability of the clustering. With this method a further improvement of the misclassification error in the aforementioned instrument recognition task is possible. Using order constrained
K
-means the musical structure of a whole piece of popular music can be extracted automatically. Visualizing the distances of the feature vectors through a self distance matrix allows for an easy visual verification of the result. For the estimation of the right number of clusters, we propose to calculate the adjusted Rand indices of bootstrap samples of the data and base the decision on the minimum of a robust version of the coefficient of variation. In addition to the average stability (measured through the adjusted Rand index) this approach takes the variation between the different bootstrap samples into account.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/s00180-012-0358-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adjustment ; Analysis ; Classification ; Clustering ; Constraints ; Economic Theory/Quantitative Economics/Mathematical Methods ; Information retrieval ; Mathematical analysis ; Mathematics and Statistics ; Music ; Musical recordings ; Original Paper ; Pattern recognition ; Probability and Statistics in Computer Science ; Probability Theory and Stochastic Processes ; Samples ; Sound ; Statistical analysis ; Statistical methods ; Statistics ; Studies ; Tasks</subject><ispartof>Computational statistics, 2014-02, Vol.29 (1-2), p.37-50</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-56fee500bcc489baa30d9eebe895284c092231b388b89d3ec73a29b2c269d3a3</citedby><cites>FETCH-LOGICAL-c349t-56fee500bcc489baa30d9eebe895284c092231b388b89d3ec73a29b2c269d3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00180-012-0358-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00180-012-0358-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Krey, Sebastian</creatorcontrib><creatorcontrib>Ligges, Uwe</creatorcontrib><creatorcontrib>Leisch, Friedrich</creatorcontrib><title>Music and timbre segmentation by recursive constrained K-means clustering</title><title>Computational statistics</title><addtitle>Comput Stat</addtitle><description>Clustering of features generated of musical sound recordings proved to be beneficial for further classification tasks such as instrument recognition (Ligges and Krey in Comput Stat 26(2):279–291,
2011
). We propose to use order constrained solutions in
K
-means clustering to stabilize the results and improve the interpretability of the clustering. With this method a further improvement of the misclassification error in the aforementioned instrument recognition task is possible. Using order constrained
K
-means the musical structure of a whole piece of popular music can be extracted automatically. Visualizing the distances of the feature vectors through a self distance matrix allows for an easy visual verification of the result. For the estimation of the right number of clusters, we propose to calculate the adjusted Rand indices of bootstrap samples of the data and base the decision on the minimum of a robust version of the coefficient of variation. In addition to the average stability (measured through the adjusted Rand index) this approach takes the variation between the different bootstrap samples into account.</description><subject>Adjustment</subject><subject>Analysis</subject><subject>Classification</subject><subject>Clustering</subject><subject>Constraints</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Information retrieval</subject><subject>Mathematical analysis</subject><subject>Mathematics and Statistics</subject><subject>Music</subject><subject>Musical recordings</subject><subject>Original Paper</subject><subject>Pattern recognition</subject><subject>Probability and Statistics in Computer Science</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Samples</subject><subject>Sound</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Studies</subject><subject>Tasks</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvAi5foJNnsJkcpfhQrXnoP2ey0pHSzNdkV_PduWQ8ieBoGnvdl5iHkmsMdB6juMwDXwIALBlJppk7IjJdcMlMqfUpmYArJCijFObnIeQcgRCX4jCzfhhw8dbGhfWjrhDTjtsXYuz50kdZfNKEfUg6fSH0Xc59ciNjQV9aii5n6_ZB7TCFuL8nZxu0zXv3MOVk_Pa4XL2z1_rxcPKyYl4XpmSo3iAqg9r7QpnZOQmMQa9RGCV14MEJIXkuta20aib6STphaeFGOq5NzcjvVHlL3MWDubRuyx_3eReyGbLkSY4VWpRnRmz_orhtSHI-zvDB6FKB5NVJ8onzqck64sYcUWpe-LAd7dGsnt3Z0a49urRozYsrkw_F1TL-a_w19A7f8e9o</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Krey, Sebastian</creator><creator>Ligges, Uwe</creator><creator>Leisch, Friedrich</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140201</creationdate><title>Music and timbre segmentation by recursive constrained K-means clustering</title><author>Krey, Sebastian ; Ligges, Uwe ; Leisch, Friedrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-56fee500bcc489baa30d9eebe895284c092231b388b89d3ec73a29b2c269d3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adjustment</topic><topic>Analysis</topic><topic>Classification</topic><topic>Clustering</topic><topic>Constraints</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Information retrieval</topic><topic>Mathematical analysis</topic><topic>Mathematics and Statistics</topic><topic>Music</topic><topic>Musical recordings</topic><topic>Original Paper</topic><topic>Pattern recognition</topic><topic>Probability and Statistics in Computer Science</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Samples</topic><topic>Sound</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Studies</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krey, Sebastian</creatorcontrib><creatorcontrib>Ligges, Uwe</creatorcontrib><creatorcontrib>Leisch, Friedrich</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krey, Sebastian</au><au>Ligges, Uwe</au><au>Leisch, Friedrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Music and timbre segmentation by recursive constrained K-means clustering</atitle><jtitle>Computational statistics</jtitle><stitle>Comput Stat</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>29</volume><issue>1-2</issue><spage>37</spage><epage>50</epage><pages>37-50</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>Clustering of features generated of musical sound recordings proved to be beneficial for further classification tasks such as instrument recognition (Ligges and Krey in Comput Stat 26(2):279–291,
2011
). We propose to use order constrained solutions in
K
-means clustering to stabilize the results and improve the interpretability of the clustering. With this method a further improvement of the misclassification error in the aforementioned instrument recognition task is possible. Using order constrained
K
-means the musical structure of a whole piece of popular music can be extracted automatically. Visualizing the distances of the feature vectors through a self distance matrix allows for an easy visual verification of the result. For the estimation of the right number of clusters, we propose to calculate the adjusted Rand indices of bootstrap samples of the data and base the decision on the minimum of a robust version of the coefficient of variation. In addition to the average stability (measured through the adjusted Rand index) this approach takes the variation between the different bootstrap samples into account.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00180-012-0358-5</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0943-4062 |
ispartof | Computational statistics, 2014-02, Vol.29 (1-2), p.37-50 |
issn | 0943-4062 1613-9658 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520928569 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adjustment Analysis Classification Clustering Constraints Economic Theory/Quantitative Economics/Mathematical Methods Information retrieval Mathematical analysis Mathematics and Statistics Music Musical recordings Original Paper Pattern recognition Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Samples Sound Statistical analysis Statistical methods Statistics Studies Tasks |
title | Music and timbre segmentation by recursive constrained K-means clustering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Music%20and%20timbre%20segmentation%20by%20recursive%20constrained%20K-means%20clustering&rft.jtitle=Computational%20statistics&rft.au=Krey,%20Sebastian&rft.date=2014-02-01&rft.volume=29&rft.issue=1-2&rft.spage=37&rft.epage=50&rft.pages=37-50&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/s00180-012-0358-5&rft_dat=%3Cproquest_cross%3E3219661151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1498272817&rft_id=info:pmid/&rfr_iscdi=true |