A Klein-Bottle-Based Dictionary for Texture Representation

A natural object of study in texture representation and material classification is the probability density function, in pixel-value space, underlying the set of small patches from the given image. Inspired by the fact that small n × n high-contrast patches from natural images in gray-scale accumulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2014-03, Vol.107 (1), p.75-97
Hauptverfasser: Perea, Jose A., Carlsson, Gunnar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue 1
container_start_page 75
container_title International journal of computer vision
container_volume 107
creator Perea, Jose A.
Carlsson, Gunnar
description A natural object of study in texture representation and material classification is the probability density function, in pixel-value space, underlying the set of small patches from the given image. Inspired by the fact that small n × n high-contrast patches from natural images in gray-scale accumulate with high density around a surface K ⊂ R n 2 with the topology of a Klein bottle (Carlsson et al. International Journal of Computer Vision 76(1):1–12, 2008 ), we present in this paper a novel framework for the estimation and representation of distributions around K , of patches from texture images. More specifically, we show that most n × n patches from a given image can be projected onto K yielding a finite sample S ⊂ K , whose underlying probability density function can be represented in terms of Fourier-like coefficients, which in turn, can be estimated from S . We show that image rotation acts as a linear transformation at the level of the estimated coefficients, and use this to define a multi-scale rotation-invariant descriptor. We test it by classifying the materials in three popular data sets: The CUReT, UIUCTex and KTH-TIPS texture databases.
doi_str_mv 10.1007/s11263-013-0676-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520927729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3218214491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-a69d8b21d2712d9b9b644695ee868461031d25ef47dc5acd254d467d571817a53</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMoOKd_gG8FEXyJ5qb5aHyb8xMHgsznkLW30tG1M2lB_3tTOkQEH8INnN89nHsIOQV2CYzpqwDAVUoZxKe0onyPTEDqlIJgcp9MmOGMSmXgkByFsGaM8YynE3I9S55rrBp603ZdjfTGBSyS2yrvqrZx_ispW58s8bPrPSavuPUYsOncoB6Tg9LVAU92c0re7u-W80e6eHl4ms8WNE-16ahTpshWHAqugRdmZVZKCGUkYqYyoYClUZJYCl3k0uXxLwqhdCE1ZKCdTKfkYvTd-vajx9DZTRVyrGvXYNsHC5LH67TmJqJnf9B12_smprMgTMaE4UpFCkYq920IHku79dUmHmuB2aFNO7ZpY5t2aNPyuHO-c3Yhd3XpXZNX4WeRZwqElkMCPnIhSs07-l8J_jX_Bk3MgZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498049266</pqid></control><display><type>article</type><title>A Klein-Bottle-Based Dictionary for Texture Representation</title><source>SpringerLink Journals</source><creator>Perea, Jose A. ; Carlsson, Gunnar</creator><creatorcontrib>Perea, Jose A. ; Carlsson, Gunnar</creatorcontrib><description>A natural object of study in texture representation and material classification is the probability density function, in pixel-value space, underlying the set of small patches from the given image. Inspired by the fact that small n × n high-contrast patches from natural images in gray-scale accumulate with high density around a surface K ⊂ R n 2 with the topology of a Klein bottle (Carlsson et al. International Journal of Computer Vision 76(1):1–12, 2008 ), we present in this paper a novel framework for the estimation and representation of distributions around K , of patches from texture images. More specifically, we show that most n × n patches from a given image can be projected onto K yielding a finite sample S ⊂ K , whose underlying probability density function can be represented in terms of Fourier-like coefficients, which in turn, can be estimated from S . We show that image rotation acts as a linear transformation at the level of the estimated coefficients, and use this to define a multi-scale rotation-invariant descriptor. We test it by classifying the materials in three popular data sets: The CUReT, UIUCTex and KTH-TIPS texture databases.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-013-0676-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Artificial Intelligence ; Classification ; Computer Imaging ; Computer Science ; Computer science; control theory; systems ; Computer vision ; Dictionaries ; Exact sciences and technology ; Histograms ; Image Processing and Computer Vision ; Mathematical functions ; Pattern Recognition ; Pattern Recognition and Graphics ; Pattern recognition. Digital image processing. Computational geometry ; Probability density functions ; Representations ; Studies ; Surface layer ; Texts ; Texture ; Vision ; Vision systems</subject><ispartof>International journal of computer vision, 2014-03, Vol.107 (1), p.75-97</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-a69d8b21d2712d9b9b644695ee868461031d25ef47dc5acd254d467d571817a53</citedby><cites>FETCH-LOGICAL-c379t-a69d8b21d2712d9b9b644695ee868461031d25ef47dc5acd254d467d571817a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11263-013-0676-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11263-013-0676-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28614759$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Perea, Jose A.</creatorcontrib><creatorcontrib>Carlsson, Gunnar</creatorcontrib><title>A Klein-Bottle-Based Dictionary for Texture Representation</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>A natural object of study in texture representation and material classification is the probability density function, in pixel-value space, underlying the set of small patches from the given image. Inspired by the fact that small n × n high-contrast patches from natural images in gray-scale accumulate with high density around a surface K ⊂ R n 2 with the topology of a Klein bottle (Carlsson et al. International Journal of Computer Vision 76(1):1–12, 2008 ), we present in this paper a novel framework for the estimation and representation of distributions around K , of patches from texture images. More specifically, we show that most n × n patches from a given image can be projected onto K yielding a finite sample S ⊂ K , whose underlying probability density function can be represented in terms of Fourier-like coefficients, which in turn, can be estimated from S . We show that image rotation acts as a linear transformation at the level of the estimated coefficients, and use this to define a multi-scale rotation-invariant descriptor. We test it by classifying the materials in three popular data sets: The CUReT, UIUCTex and KTH-TIPS texture databases.</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Dictionaries</subject><subject>Exact sciences and technology</subject><subject>Histograms</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematical functions</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Probability density functions</subject><subject>Representations</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Texts</subject><subject>Texture</subject><subject>Vision</subject><subject>Vision systems</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kN1LwzAUxYMoOKd_gG8FEXyJ5qb5aHyb8xMHgsznkLW30tG1M2lB_3tTOkQEH8INnN89nHsIOQV2CYzpqwDAVUoZxKe0onyPTEDqlIJgcp9MmOGMSmXgkByFsGaM8YynE3I9S55rrBp603ZdjfTGBSyS2yrvqrZx_ispW58s8bPrPSavuPUYsOncoB6Tg9LVAU92c0re7u-W80e6eHl4ms8WNE-16ahTpshWHAqugRdmZVZKCGUkYqYyoYClUZJYCl3k0uXxLwqhdCE1ZKCdTKfkYvTd-vajx9DZTRVyrGvXYNsHC5LH67TmJqJnf9B12_smprMgTMaE4UpFCkYq920IHku79dUmHmuB2aFNO7ZpY5t2aNPyuHO-c3Yhd3XpXZNX4WeRZwqElkMCPnIhSs07-l8J_jX_Bk3MgZ4</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Perea, Jose A.</creator><creator>Carlsson, Gunnar</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20140301</creationdate><title>A Klein-Bottle-Based Dictionary for Texture Representation</title><author>Perea, Jose A. ; Carlsson, Gunnar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-a69d8b21d2712d9b9b644695ee868461031d25ef47dc5acd254d467d571817a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Dictionaries</topic><topic>Exact sciences and technology</topic><topic>Histograms</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematical functions</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Probability density functions</topic><topic>Representations</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Texts</topic><topic>Texture</topic><topic>Vision</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perea, Jose A.</creatorcontrib><creatorcontrib>Carlsson, Gunnar</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perea, Jose A.</au><au>Carlsson, Gunnar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Klein-Bottle-Based Dictionary for Texture Representation</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>107</volume><issue>1</issue><spage>75</spage><epage>97</epage><pages>75-97</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>A natural object of study in texture representation and material classification is the probability density function, in pixel-value space, underlying the set of small patches from the given image. Inspired by the fact that small n × n high-contrast patches from natural images in gray-scale accumulate with high density around a surface K ⊂ R n 2 with the topology of a Klein bottle (Carlsson et al. International Journal of Computer Vision 76(1):1–12, 2008 ), we present in this paper a novel framework for the estimation and representation of distributions around K , of patches from texture images. More specifically, we show that most n × n patches from a given image can be projected onto K yielding a finite sample S ⊂ K , whose underlying probability density function can be represented in terms of Fourier-like coefficients, which in turn, can be estimated from S . We show that image rotation acts as a linear transformation at the level of the estimated coefficients, and use this to define a multi-scale rotation-invariant descriptor. We test it by classifying the materials in three popular data sets: The CUReT, UIUCTex and KTH-TIPS texture databases.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11263-013-0676-2</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-5691
ispartof International journal of computer vision, 2014-03, Vol.107 (1), p.75-97
issn 0920-5691
1573-1405
language eng
recordid cdi_proquest_miscellaneous_1520927729
source SpringerLink Journals
subjects Applied sciences
Artificial Intelligence
Classification
Computer Imaging
Computer Science
Computer science
control theory
systems
Computer vision
Dictionaries
Exact sciences and technology
Histograms
Image Processing and Computer Vision
Mathematical functions
Pattern Recognition
Pattern Recognition and Graphics
Pattern recognition. Digital image processing. Computational geometry
Probability density functions
Representations
Studies
Surface layer
Texts
Texture
Vision
Vision systems
title A Klein-Bottle-Based Dictionary for Texture Representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Klein-Bottle-Based%20Dictionary%20for%20Texture%20Representation&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Perea,%20Jose%20A.&rft.date=2014-03-01&rft.volume=107&rft.issue=1&rft.spage=75&rft.epage=97&rft.pages=75-97&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-013-0676-2&rft_dat=%3Cproquest_cross%3E3218214491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1498049266&rft_id=info:pmid/&rfr_iscdi=true