A Klein-Bottle-Based Dictionary for Texture Representation
A natural object of study in texture representation and material classification is the probability density function, in pixel-value space, underlying the set of small patches from the given image. Inspired by the fact that small n × n high-contrast patches from natural images in gray-scale accumulat...
Gespeichert in:
Veröffentlicht in: | International journal of computer vision 2014-03, Vol.107 (1), p.75-97 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 97 |
---|---|
container_issue | 1 |
container_start_page | 75 |
container_title | International journal of computer vision |
container_volume | 107 |
creator | Perea, Jose A. Carlsson, Gunnar |
description | A natural object of study in texture representation and material classification is the probability density function, in pixel-value space, underlying the set of small patches from the given image. Inspired by the fact that small
n
×
n
high-contrast patches from natural images in gray-scale accumulate with high density around a surface
K
⊂
R
n
2
with the topology of a Klein bottle (Carlsson et al. International Journal of Computer Vision 76(1):1–12,
2008
), we present in this paper a novel framework for the estimation and representation of distributions around
K
, of patches from texture images. More specifically, we show that most
n
×
n
patches from a given image can be projected onto
K
yielding a finite sample
S
⊂
K
, whose underlying probability density function can be represented in terms of Fourier-like coefficients, which in turn, can be estimated from
S
. We show that image rotation acts as a linear transformation at the level of the estimated coefficients, and use this to define a multi-scale rotation-invariant descriptor. We test it by classifying the materials in three popular data sets: The CUReT, UIUCTex and KTH-TIPS texture databases. |
doi_str_mv | 10.1007/s11263-013-0676-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520927729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3218214491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-a69d8b21d2712d9b9b644695ee868461031d25ef47dc5acd254d467d571817a53</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMoOKd_gG8FEXyJ5qb5aHyb8xMHgsznkLW30tG1M2lB_3tTOkQEH8INnN89nHsIOQV2CYzpqwDAVUoZxKe0onyPTEDqlIJgcp9MmOGMSmXgkByFsGaM8YynE3I9S55rrBp603ZdjfTGBSyS2yrvqrZx_ispW58s8bPrPSavuPUYsOncoB6Tg9LVAU92c0re7u-W80e6eHl4ms8WNE-16ahTpshWHAqugRdmZVZKCGUkYqYyoYClUZJYCl3k0uXxLwqhdCE1ZKCdTKfkYvTd-vajx9DZTRVyrGvXYNsHC5LH67TmJqJnf9B12_smprMgTMaE4UpFCkYq920IHku79dUmHmuB2aFNO7ZpY5t2aNPyuHO-c3Yhd3XpXZNX4WeRZwqElkMCPnIhSs07-l8J_jX_Bk3MgZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498049266</pqid></control><display><type>article</type><title>A Klein-Bottle-Based Dictionary for Texture Representation</title><source>SpringerLink Journals</source><creator>Perea, Jose A. ; Carlsson, Gunnar</creator><creatorcontrib>Perea, Jose A. ; Carlsson, Gunnar</creatorcontrib><description>A natural object of study in texture representation and material classification is the probability density function, in pixel-value space, underlying the set of small patches from the given image. Inspired by the fact that small
n
×
n
high-contrast patches from natural images in gray-scale accumulate with high density around a surface
K
⊂
R
n
2
with the topology of a Klein bottle (Carlsson et al. International Journal of Computer Vision 76(1):1–12,
2008
), we present in this paper a novel framework for the estimation and representation of distributions around
K
, of patches from texture images. More specifically, we show that most
n
×
n
patches from a given image can be projected onto
K
yielding a finite sample
S
⊂
K
, whose underlying probability density function can be represented in terms of Fourier-like coefficients, which in turn, can be estimated from
S
. We show that image rotation acts as a linear transformation at the level of the estimated coefficients, and use this to define a multi-scale rotation-invariant descriptor. We test it by classifying the materials in three popular data sets: The CUReT, UIUCTex and KTH-TIPS texture databases.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-013-0676-2</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Applied sciences ; Artificial Intelligence ; Classification ; Computer Imaging ; Computer Science ; Computer science; control theory; systems ; Computer vision ; Dictionaries ; Exact sciences and technology ; Histograms ; Image Processing and Computer Vision ; Mathematical functions ; Pattern Recognition ; Pattern Recognition and Graphics ; Pattern recognition. Digital image processing. Computational geometry ; Probability density functions ; Representations ; Studies ; Surface layer ; Texts ; Texture ; Vision ; Vision systems</subject><ispartof>International journal of computer vision, 2014-03, Vol.107 (1), p.75-97</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>2015 INIST-CNRS</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-a69d8b21d2712d9b9b644695ee868461031d25ef47dc5acd254d467d571817a53</citedby><cites>FETCH-LOGICAL-c379t-a69d8b21d2712d9b9b644695ee868461031d25ef47dc5acd254d467d571817a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11263-013-0676-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11263-013-0676-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28614759$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Perea, Jose A.</creatorcontrib><creatorcontrib>Carlsson, Gunnar</creatorcontrib><title>A Klein-Bottle-Based Dictionary for Texture Representation</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>A natural object of study in texture representation and material classification is the probability density function, in pixel-value space, underlying the set of small patches from the given image. Inspired by the fact that small
n
×
n
high-contrast patches from natural images in gray-scale accumulate with high density around a surface
K
⊂
R
n
2
with the topology of a Klein bottle (Carlsson et al. International Journal of Computer Vision 76(1):1–12,
2008
), we present in this paper a novel framework for the estimation and representation of distributions around
K
, of patches from texture images. More specifically, we show that most
n
×
n
patches from a given image can be projected onto
K
yielding a finite sample
S
⊂
K
, whose underlying probability density function can be represented in terms of Fourier-like coefficients, which in turn, can be estimated from
S
. We show that image rotation acts as a linear transformation at the level of the estimated coefficients, and use this to define a multi-scale rotation-invariant descriptor. We test it by classifying the materials in three popular data sets: The CUReT, UIUCTex and KTH-TIPS texture databases.</description><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>Dictionaries</subject><subject>Exact sciences and technology</subject><subject>Histograms</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematical functions</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Probability density functions</subject><subject>Representations</subject><subject>Studies</subject><subject>Surface layer</subject><subject>Texts</subject><subject>Texture</subject><subject>Vision</subject><subject>Vision systems</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kN1LwzAUxYMoOKd_gG8FEXyJ5qb5aHyb8xMHgsznkLW30tG1M2lB_3tTOkQEH8INnN89nHsIOQV2CYzpqwDAVUoZxKe0onyPTEDqlIJgcp9MmOGMSmXgkByFsGaM8YynE3I9S55rrBp603ZdjfTGBSyS2yrvqrZx_ispW58s8bPrPSavuPUYsOncoB6Tg9LVAU92c0re7u-W80e6eHl4ms8WNE-16ahTpshWHAqugRdmZVZKCGUkYqYyoYClUZJYCl3k0uXxLwqhdCE1ZKCdTKfkYvTd-vajx9DZTRVyrGvXYNsHC5LH67TmJqJnf9B12_smprMgTMaE4UpFCkYq920IHku79dUmHmuB2aFNO7ZpY5t2aNPyuHO-c3Yhd3XpXZNX4WeRZwqElkMCPnIhSs07-l8J_jX_Bk3MgZ4</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Perea, Jose A.</creator><creator>Carlsson, Gunnar</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20140301</creationdate><title>A Klein-Bottle-Based Dictionary for Texture Representation</title><author>Perea, Jose A. ; Carlsson, Gunnar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-a69d8b21d2712d9b9b644695ee868461031d25ef47dc5acd254d467d571817a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>Dictionaries</topic><topic>Exact sciences and technology</topic><topic>Histograms</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematical functions</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Probability density functions</topic><topic>Representations</topic><topic>Studies</topic><topic>Surface layer</topic><topic>Texts</topic><topic>Texture</topic><topic>Vision</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perea, Jose A.</creatorcontrib><creatorcontrib>Carlsson, Gunnar</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perea, Jose A.</au><au>Carlsson, Gunnar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Klein-Bottle-Based Dictionary for Texture Representation</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>107</volume><issue>1</issue><spage>75</spage><epage>97</epage><pages>75-97</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>A natural object of study in texture representation and material classification is the probability density function, in pixel-value space, underlying the set of small patches from the given image. Inspired by the fact that small
n
×
n
high-contrast patches from natural images in gray-scale accumulate with high density around a surface
K
⊂
R
n
2
with the topology of a Klein bottle (Carlsson et al. International Journal of Computer Vision 76(1):1–12,
2008
), we present in this paper a novel framework for the estimation and representation of distributions around
K
, of patches from texture images. More specifically, we show that most
n
×
n
patches from a given image can be projected onto
K
yielding a finite sample
S
⊂
K
, whose underlying probability density function can be represented in terms of Fourier-like coefficients, which in turn, can be estimated from
S
. We show that image rotation acts as a linear transformation at the level of the estimated coefficients, and use this to define a multi-scale rotation-invariant descriptor. We test it by classifying the materials in three popular data sets: The CUReT, UIUCTex and KTH-TIPS texture databases.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11263-013-0676-2</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 2014-03, Vol.107 (1), p.75-97 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520927729 |
source | SpringerLink Journals |
subjects | Applied sciences Artificial Intelligence Classification Computer Imaging Computer Science Computer science control theory systems Computer vision Dictionaries Exact sciences and technology Histograms Image Processing and Computer Vision Mathematical functions Pattern Recognition Pattern Recognition and Graphics Pattern recognition. Digital image processing. Computational geometry Probability density functions Representations Studies Surface layer Texts Texture Vision Vision systems |
title | A Klein-Bottle-Based Dictionary for Texture Representation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Klein-Bottle-Based%20Dictionary%20for%20Texture%20Representation&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Perea,%20Jose%20A.&rft.date=2014-03-01&rft.volume=107&rft.issue=1&rft.spage=75&rft.epage=97&rft.pages=75-97&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-013-0676-2&rft_dat=%3Cproquest_cross%3E3218214491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1498049266&rft_id=info:pmid/&rfr_iscdi=true |