The in vitro and in vivo antioxidant properties of seabuckthorn ( Hippophae rhamnoides L.) seed oil

The antioxidant capacity of seabuckthorn ( Hippophae rhamnoides L.) seed oil was investigated with a number of established in vitro assays and in an in vivo study of carbon tetrachloride (CCl 4)-induced oxidative stress in mice. The results showed that DPPH radical scavenging activity, ferrous ion c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food chemistry 2011-03, Vol.125 (2), p.652-659
Hauptverfasser: Ting, Hung-Chih, Hsu, Yu-Wen, Tsai, Chia-Fang, Lu, Fung-Jou, Chou, Ming-Chih, Chen, Wen-Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 659
container_issue 2
container_start_page 652
container_title Food chemistry
container_volume 125
creator Ting, Hung-Chih
Hsu, Yu-Wen
Tsai, Chia-Fang
Lu, Fung-Jou
Chou, Ming-Chih
Chen, Wen-Kang
description The antioxidant capacity of seabuckthorn ( Hippophae rhamnoides L.) seed oil was investigated with a number of established in vitro assays and in an in vivo study of carbon tetrachloride (CCl 4)-induced oxidative stress in mice. The results showed that DPPH radical scavenging activity, ferrous ion chelating activity, reducing power and inhibition of lipid peroxidation activity all increased with increasing concentrations of seabuckthorn seed oil. Moreover, the EC 50 values of seabuckthorn seed oil from the hydrogen peroxide, superoxide radical, hydroxyl radical scavenging assays were 2.63, 2.16 and 0.77 mg/ml, respectively. In the in vivo study, seabuckthorn seed oil inhibited the toxicity of CCl 4, as seen from the significantly increased activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The GSH content in the liver was also increased, whereas hepatic malondialdehyde was reduced. Taken together, these results clearly indicate that seabuckthorn seed oil has significant potential as a natural antioxidant agent.
doi_str_mv 10.1016/j.foodchem.2010.09.057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520927182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308814610011544</els_id><sourcerecordid>1520927182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-4644a817cce1c7adc1752ab886a9a9235369d159f99087d434f3ff28d61a8e863</originalsourceid><addsrcrecordid>eNqFkMtu1DAUQC0EEkPpLxRvkMoiqR-JHztQVSjSSCxo15ZrXxMPmTjYmVH5ezxKy7ara1-d-zoIXVDSUkLF1a4NKXk3wL5lpCaJbkkvX6ENVZI3kkj2Gm0IJ6pRtBNv0btSdoSQyqoNcncD4DjhY1xywnby6-d4ei8xPUZfI55zmiEvEQpOARewDwf3exlSnvAlvo3znObBAs6D3U8p-opt20-VA49THN-jN8GOBc6f4hm6_3pzd33bbH98-379Zds4rvXSdKLrrKLSOaBOWu-o7Jl9UEpYbTXjPRfa014HrYmSvuNd4CEw5QW1CpTgZ-hy7VvX_XOAsph9LA7G0U6QDsXQnhHNJFWsomJFXU6lZAhmznFv819DiTlZNTvzbNWcrBqiTbVaCz8-zbDF2TFkO7lY_lczXg8Qqq_ch5ULNhn7K1fm_mdtxAnVRCjOK_F5JaAqOUbIprgIkwMfM7jF-BRfWuYfnBCZpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520927182</pqid></control><display><type>article</type><title>The in vitro and in vivo antioxidant properties of seabuckthorn ( Hippophae rhamnoides L.) seed oil</title><source>Elsevier ScienceDirect Journals</source><creator>Ting, Hung-Chih ; Hsu, Yu-Wen ; Tsai, Chia-Fang ; Lu, Fung-Jou ; Chou, Ming-Chih ; Chen, Wen-Kang</creator><creatorcontrib>Ting, Hung-Chih ; Hsu, Yu-Wen ; Tsai, Chia-Fang ; Lu, Fung-Jou ; Chou, Ming-Chih ; Chen, Wen-Kang</creatorcontrib><description>The antioxidant capacity of seabuckthorn ( Hippophae rhamnoides L.) seed oil was investigated with a number of established in vitro assays and in an in vivo study of carbon tetrachloride (CCl 4)-induced oxidative stress in mice. The results showed that DPPH radical scavenging activity, ferrous ion chelating activity, reducing power and inhibition of lipid peroxidation activity all increased with increasing concentrations of seabuckthorn seed oil. Moreover, the EC 50 values of seabuckthorn seed oil from the hydrogen peroxide, superoxide radical, hydroxyl radical scavenging assays were 2.63, 2.16 and 0.77 mg/ml, respectively. In the in vivo study, seabuckthorn seed oil inhibited the toxicity of CCl 4, as seen from the significantly increased activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The GSH content in the liver was also increased, whereas hepatic malondialdehyde was reduced. Taken together, these results clearly indicate that seabuckthorn seed oil has significant potential as a natural antioxidant agent.</description><identifier>ISSN: 0308-8146</identifier><identifier>EISSN: 1873-7072</identifier><identifier>DOI: 10.1016/j.foodchem.2010.09.057</identifier><identifier>CODEN: FOCHDJ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>animal models ; Antioxidant ; antioxidant activity ; Antioxidants ; Biocompatibility ; Biological and medical sciences ; Biomedical materials ; Fat industries ; Food industries ; Fundamental and applied biological sciences. Psychology ; Hippophae rhamnoides ; Hippophae rhamnoides L ; In vitro ; in vitro studies ; In vitro testing ; In vivo ; in vivo studies ; In vivo testing ; In vivo tests ; medicinal plants ; mice ; oxidative stress ; Seabuckthorn seed oil ; seed oils ; Seeds ; Surgical implants</subject><ispartof>Food chemistry, 2011-03, Vol.125 (2), p.652-659</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-4644a817cce1c7adc1752ab886a9a9235369d159f99087d434f3ff28d61a8e863</citedby><cites>FETCH-LOGICAL-c399t-4644a817cce1c7adc1752ab886a9a9235369d159f99087d434f3ff28d61a8e863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0308814610011544$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23817685$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ting, Hung-Chih</creatorcontrib><creatorcontrib>Hsu, Yu-Wen</creatorcontrib><creatorcontrib>Tsai, Chia-Fang</creatorcontrib><creatorcontrib>Lu, Fung-Jou</creatorcontrib><creatorcontrib>Chou, Ming-Chih</creatorcontrib><creatorcontrib>Chen, Wen-Kang</creatorcontrib><title>The in vitro and in vivo antioxidant properties of seabuckthorn ( Hippophae rhamnoides L.) seed oil</title><title>Food chemistry</title><description>The antioxidant capacity of seabuckthorn ( Hippophae rhamnoides L.) seed oil was investigated with a number of established in vitro assays and in an in vivo study of carbon tetrachloride (CCl 4)-induced oxidative stress in mice. The results showed that DPPH radical scavenging activity, ferrous ion chelating activity, reducing power and inhibition of lipid peroxidation activity all increased with increasing concentrations of seabuckthorn seed oil. Moreover, the EC 50 values of seabuckthorn seed oil from the hydrogen peroxide, superoxide radical, hydroxyl radical scavenging assays were 2.63, 2.16 and 0.77 mg/ml, respectively. In the in vivo study, seabuckthorn seed oil inhibited the toxicity of CCl 4, as seen from the significantly increased activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The GSH content in the liver was also increased, whereas hepatic malondialdehyde was reduced. Taken together, these results clearly indicate that seabuckthorn seed oil has significant potential as a natural antioxidant agent.</description><subject>animal models</subject><subject>Antioxidant</subject><subject>antioxidant activity</subject><subject>Antioxidants</subject><subject>Biocompatibility</subject><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Fat industries</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hippophae rhamnoides</subject><subject>Hippophae rhamnoides L</subject><subject>In vitro</subject><subject>in vitro studies</subject><subject>In vitro testing</subject><subject>In vivo</subject><subject>in vivo studies</subject><subject>In vivo testing</subject><subject>In vivo tests</subject><subject>medicinal plants</subject><subject>mice</subject><subject>oxidative stress</subject><subject>Seabuckthorn seed oil</subject><subject>seed oils</subject><subject>Seeds</subject><subject>Surgical implants</subject><issn>0308-8146</issn><issn>1873-7072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMtu1DAUQC0EEkPpLxRvkMoiqR-JHztQVSjSSCxo15ZrXxMPmTjYmVH5ezxKy7ara1-d-zoIXVDSUkLF1a4NKXk3wL5lpCaJbkkvX6ENVZI3kkj2Gm0IJ6pRtBNv0btSdoSQyqoNcncD4DjhY1xywnby6-d4ei8xPUZfI55zmiEvEQpOARewDwf3exlSnvAlvo3znObBAs6D3U8p-opt20-VA49THN-jN8GOBc6f4hm6_3pzd33bbH98-379Zds4rvXSdKLrrKLSOaBOWu-o7Jl9UEpYbTXjPRfa014HrYmSvuNd4CEw5QW1CpTgZ-hy7VvX_XOAsph9LA7G0U6QDsXQnhHNJFWsomJFXU6lZAhmznFv819DiTlZNTvzbNWcrBqiTbVaCz8-zbDF2TFkO7lY_lczXg8Qqq_ch5ULNhn7K1fm_mdtxAnVRCjOK_F5JaAqOUbIprgIkwMfM7jF-BRfWuYfnBCZpQ</recordid><startdate>20110315</startdate><enddate>20110315</enddate><creator>Ting, Hung-Chih</creator><creator>Hsu, Yu-Wen</creator><creator>Tsai, Chia-Fang</creator><creator>Lu, Fung-Jou</creator><creator>Chou, Ming-Chih</creator><creator>Chen, Wen-Kang</creator><general>Elsevier Ltd</general><general>[Amsterdam]: Elsevier Science</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110315</creationdate><title>The in vitro and in vivo antioxidant properties of seabuckthorn ( Hippophae rhamnoides L.) seed oil</title><author>Ting, Hung-Chih ; Hsu, Yu-Wen ; Tsai, Chia-Fang ; Lu, Fung-Jou ; Chou, Ming-Chih ; Chen, Wen-Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-4644a817cce1c7adc1752ab886a9a9235369d159f99087d434f3ff28d61a8e863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>animal models</topic><topic>Antioxidant</topic><topic>antioxidant activity</topic><topic>Antioxidants</topic><topic>Biocompatibility</topic><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Fat industries</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hippophae rhamnoides</topic><topic>Hippophae rhamnoides L</topic><topic>In vitro</topic><topic>in vitro studies</topic><topic>In vitro testing</topic><topic>In vivo</topic><topic>in vivo studies</topic><topic>In vivo testing</topic><topic>In vivo tests</topic><topic>medicinal plants</topic><topic>mice</topic><topic>oxidative stress</topic><topic>Seabuckthorn seed oil</topic><topic>seed oils</topic><topic>Seeds</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ting, Hung-Chih</creatorcontrib><creatorcontrib>Hsu, Yu-Wen</creatorcontrib><creatorcontrib>Tsai, Chia-Fang</creatorcontrib><creatorcontrib>Lu, Fung-Jou</creatorcontrib><creatorcontrib>Chou, Ming-Chih</creatorcontrib><creatorcontrib>Chen, Wen-Kang</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ting, Hung-Chih</au><au>Hsu, Yu-Wen</au><au>Tsai, Chia-Fang</au><au>Lu, Fung-Jou</au><au>Chou, Ming-Chih</au><au>Chen, Wen-Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The in vitro and in vivo antioxidant properties of seabuckthorn ( Hippophae rhamnoides L.) seed oil</atitle><jtitle>Food chemistry</jtitle><date>2011-03-15</date><risdate>2011</risdate><volume>125</volume><issue>2</issue><spage>652</spage><epage>659</epage><pages>652-659</pages><issn>0308-8146</issn><eissn>1873-7072</eissn><coden>FOCHDJ</coden><abstract>The antioxidant capacity of seabuckthorn ( Hippophae rhamnoides L.) seed oil was investigated with a number of established in vitro assays and in an in vivo study of carbon tetrachloride (CCl 4)-induced oxidative stress in mice. The results showed that DPPH radical scavenging activity, ferrous ion chelating activity, reducing power and inhibition of lipid peroxidation activity all increased with increasing concentrations of seabuckthorn seed oil. Moreover, the EC 50 values of seabuckthorn seed oil from the hydrogen peroxide, superoxide radical, hydroxyl radical scavenging assays were 2.63, 2.16 and 0.77 mg/ml, respectively. In the in vivo study, seabuckthorn seed oil inhibited the toxicity of CCl 4, as seen from the significantly increased activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The GSH content in the liver was also increased, whereas hepatic malondialdehyde was reduced. Taken together, these results clearly indicate that seabuckthorn seed oil has significant potential as a natural antioxidant agent.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.foodchem.2010.09.057</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-8146
ispartof Food chemistry, 2011-03, Vol.125 (2), p.652-659
issn 0308-8146
1873-7072
language eng
recordid cdi_proquest_miscellaneous_1520927182
source Elsevier ScienceDirect Journals
subjects animal models
Antioxidant
antioxidant activity
Antioxidants
Biocompatibility
Biological and medical sciences
Biomedical materials
Fat industries
Food industries
Fundamental and applied biological sciences. Psychology
Hippophae rhamnoides
Hippophae rhamnoides L
In vitro
in vitro studies
In vitro testing
In vivo
in vivo studies
In vivo testing
In vivo tests
medicinal plants
mice
oxidative stress
Seabuckthorn seed oil
seed oils
Seeds
Surgical implants
title The in vitro and in vivo antioxidant properties of seabuckthorn ( Hippophae rhamnoides L.) seed oil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20in%20vitro%20and%20in%20vivo%20antioxidant%20properties%20of%20seabuckthorn%20(%20Hippophae%20rhamnoides%20L.)%20seed%20oil&rft.jtitle=Food%20chemistry&rft.au=Ting,%20Hung-Chih&rft.date=2011-03-15&rft.volume=125&rft.issue=2&rft.spage=652&rft.epage=659&rft.pages=652-659&rft.issn=0308-8146&rft.eissn=1873-7072&rft.coden=FOCHDJ&rft_id=info:doi/10.1016/j.foodchem.2010.09.057&rft_dat=%3Cproquest_cross%3E1520927182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520927182&rft_id=info:pmid/&rft_els_id=S0308814610011544&rfr_iscdi=true