The in vitro and in vivo antioxidant properties of seabuckthorn ( Hippophae rhamnoides L.) seed oil
The antioxidant capacity of seabuckthorn ( Hippophae rhamnoides L.) seed oil was investigated with a number of established in vitro assays and in an in vivo study of carbon tetrachloride (CCl 4)-induced oxidative stress in mice. The results showed that DPPH radical scavenging activity, ferrous ion c...
Gespeichert in:
Veröffentlicht in: | Food chemistry 2011-03, Vol.125 (2), p.652-659 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 659 |
---|---|
container_issue | 2 |
container_start_page | 652 |
container_title | Food chemistry |
container_volume | 125 |
creator | Ting, Hung-Chih Hsu, Yu-Wen Tsai, Chia-Fang Lu, Fung-Jou Chou, Ming-Chih Chen, Wen-Kang |
description | The antioxidant capacity of seabuckthorn (
Hippophae rhamnoides L.) seed oil was investigated with a number of established
in vitro assays and in an
in vivo study of carbon tetrachloride (CCl
4)-induced oxidative stress in mice. The results showed that DPPH radical scavenging activity, ferrous ion chelating activity, reducing power and inhibition of lipid peroxidation activity all increased with increasing concentrations of seabuckthorn seed oil. Moreover, the EC
50 values of seabuckthorn seed oil from the hydrogen peroxide, superoxide radical, hydroxyl radical scavenging assays were 2.63, 2.16 and 0.77
mg/ml, respectively. In the
in vivo study, seabuckthorn seed oil inhibited the toxicity of CCl
4, as seen from the significantly increased activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The GSH content in the liver was also increased, whereas hepatic malondialdehyde was reduced. Taken together, these results clearly indicate that seabuckthorn seed oil has significant potential as a natural antioxidant agent. |
doi_str_mv | 10.1016/j.foodchem.2010.09.057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520927182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308814610011544</els_id><sourcerecordid>1520927182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-4644a817cce1c7adc1752ab886a9a9235369d159f99087d434f3ff28d61a8e863</originalsourceid><addsrcrecordid>eNqFkMtu1DAUQC0EEkPpLxRvkMoiqR-JHztQVSjSSCxo15ZrXxMPmTjYmVH5ezxKy7ara1-d-zoIXVDSUkLF1a4NKXk3wL5lpCaJbkkvX6ENVZI3kkj2Gm0IJ6pRtBNv0btSdoSQyqoNcncD4DjhY1xywnby6-d4ei8xPUZfI55zmiEvEQpOARewDwf3exlSnvAlvo3znObBAs6D3U8p-opt20-VA49THN-jN8GOBc6f4hm6_3pzd33bbH98-379Zds4rvXSdKLrrKLSOaBOWu-o7Jl9UEpYbTXjPRfa014HrYmSvuNd4CEw5QW1CpTgZ-hy7VvX_XOAsph9LA7G0U6QDsXQnhHNJFWsomJFXU6lZAhmznFv819DiTlZNTvzbNWcrBqiTbVaCz8-zbDF2TFkO7lY_lczXg8Qqq_ch5ULNhn7K1fm_mdtxAnVRCjOK_F5JaAqOUbIprgIkwMfM7jF-BRfWuYfnBCZpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520927182</pqid></control><display><type>article</type><title>The in vitro and in vivo antioxidant properties of seabuckthorn ( Hippophae rhamnoides L.) seed oil</title><source>Elsevier ScienceDirect Journals</source><creator>Ting, Hung-Chih ; Hsu, Yu-Wen ; Tsai, Chia-Fang ; Lu, Fung-Jou ; Chou, Ming-Chih ; Chen, Wen-Kang</creator><creatorcontrib>Ting, Hung-Chih ; Hsu, Yu-Wen ; Tsai, Chia-Fang ; Lu, Fung-Jou ; Chou, Ming-Chih ; Chen, Wen-Kang</creatorcontrib><description>The antioxidant capacity of seabuckthorn (
Hippophae rhamnoides L.) seed oil was investigated with a number of established
in vitro assays and in an
in vivo study of carbon tetrachloride (CCl
4)-induced oxidative stress in mice. The results showed that DPPH radical scavenging activity, ferrous ion chelating activity, reducing power and inhibition of lipid peroxidation activity all increased with increasing concentrations of seabuckthorn seed oil. Moreover, the EC
50 values of seabuckthorn seed oil from the hydrogen peroxide, superoxide radical, hydroxyl radical scavenging assays were 2.63, 2.16 and 0.77
mg/ml, respectively. In the
in vivo study, seabuckthorn seed oil inhibited the toxicity of CCl
4, as seen from the significantly increased activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The GSH content in the liver was also increased, whereas hepatic malondialdehyde was reduced. Taken together, these results clearly indicate that seabuckthorn seed oil has significant potential as a natural antioxidant agent.</description><identifier>ISSN: 0308-8146</identifier><identifier>EISSN: 1873-7072</identifier><identifier>DOI: 10.1016/j.foodchem.2010.09.057</identifier><identifier>CODEN: FOCHDJ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>animal models ; Antioxidant ; antioxidant activity ; Antioxidants ; Biocompatibility ; Biological and medical sciences ; Biomedical materials ; Fat industries ; Food industries ; Fundamental and applied biological sciences. Psychology ; Hippophae rhamnoides ; Hippophae rhamnoides L ; In vitro ; in vitro studies ; In vitro testing ; In vivo ; in vivo studies ; In vivo testing ; In vivo tests ; medicinal plants ; mice ; oxidative stress ; Seabuckthorn seed oil ; seed oils ; Seeds ; Surgical implants</subject><ispartof>Food chemistry, 2011-03, Vol.125 (2), p.652-659</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-4644a817cce1c7adc1752ab886a9a9235369d159f99087d434f3ff28d61a8e863</citedby><cites>FETCH-LOGICAL-c399t-4644a817cce1c7adc1752ab886a9a9235369d159f99087d434f3ff28d61a8e863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0308814610011544$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23817685$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ting, Hung-Chih</creatorcontrib><creatorcontrib>Hsu, Yu-Wen</creatorcontrib><creatorcontrib>Tsai, Chia-Fang</creatorcontrib><creatorcontrib>Lu, Fung-Jou</creatorcontrib><creatorcontrib>Chou, Ming-Chih</creatorcontrib><creatorcontrib>Chen, Wen-Kang</creatorcontrib><title>The in vitro and in vivo antioxidant properties of seabuckthorn ( Hippophae rhamnoides L.) seed oil</title><title>Food chemistry</title><description>The antioxidant capacity of seabuckthorn (
Hippophae rhamnoides L.) seed oil was investigated with a number of established
in vitro assays and in an
in vivo study of carbon tetrachloride (CCl
4)-induced oxidative stress in mice. The results showed that DPPH radical scavenging activity, ferrous ion chelating activity, reducing power and inhibition of lipid peroxidation activity all increased with increasing concentrations of seabuckthorn seed oil. Moreover, the EC
50 values of seabuckthorn seed oil from the hydrogen peroxide, superoxide radical, hydroxyl radical scavenging assays were 2.63, 2.16 and 0.77
mg/ml, respectively. In the
in vivo study, seabuckthorn seed oil inhibited the toxicity of CCl
4, as seen from the significantly increased activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The GSH content in the liver was also increased, whereas hepatic malondialdehyde was reduced. Taken together, these results clearly indicate that seabuckthorn seed oil has significant potential as a natural antioxidant agent.</description><subject>animal models</subject><subject>Antioxidant</subject><subject>antioxidant activity</subject><subject>Antioxidants</subject><subject>Biocompatibility</subject><subject>Biological and medical sciences</subject><subject>Biomedical materials</subject><subject>Fat industries</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hippophae rhamnoides</subject><subject>Hippophae rhamnoides L</subject><subject>In vitro</subject><subject>in vitro studies</subject><subject>In vitro testing</subject><subject>In vivo</subject><subject>in vivo studies</subject><subject>In vivo testing</subject><subject>In vivo tests</subject><subject>medicinal plants</subject><subject>mice</subject><subject>oxidative stress</subject><subject>Seabuckthorn seed oil</subject><subject>seed oils</subject><subject>Seeds</subject><subject>Surgical implants</subject><issn>0308-8146</issn><issn>1873-7072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMtu1DAUQC0EEkPpLxRvkMoiqR-JHztQVSjSSCxo15ZrXxMPmTjYmVH5ezxKy7ara1-d-zoIXVDSUkLF1a4NKXk3wL5lpCaJbkkvX6ENVZI3kkj2Gm0IJ6pRtBNv0btSdoSQyqoNcncD4DjhY1xywnby6-d4ei8xPUZfI55zmiEvEQpOARewDwf3exlSnvAlvo3znObBAs6D3U8p-opt20-VA49THN-jN8GOBc6f4hm6_3pzd33bbH98-379Zds4rvXSdKLrrKLSOaBOWu-o7Jl9UEpYbTXjPRfa014HrYmSvuNd4CEw5QW1CpTgZ-hy7VvX_XOAsph9LA7G0U6QDsXQnhHNJFWsomJFXU6lZAhmznFv819DiTlZNTvzbNWcrBqiTbVaCz8-zbDF2TFkO7lY_lczXg8Qqq_ch5ULNhn7K1fm_mdtxAnVRCjOK_F5JaAqOUbIprgIkwMfM7jF-BRfWuYfnBCZpQ</recordid><startdate>20110315</startdate><enddate>20110315</enddate><creator>Ting, Hung-Chih</creator><creator>Hsu, Yu-Wen</creator><creator>Tsai, Chia-Fang</creator><creator>Lu, Fung-Jou</creator><creator>Chou, Ming-Chih</creator><creator>Chen, Wen-Kang</creator><general>Elsevier Ltd</general><general>[Amsterdam]: Elsevier Science</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110315</creationdate><title>The in vitro and in vivo antioxidant properties of seabuckthorn ( Hippophae rhamnoides L.) seed oil</title><author>Ting, Hung-Chih ; Hsu, Yu-Wen ; Tsai, Chia-Fang ; Lu, Fung-Jou ; Chou, Ming-Chih ; Chen, Wen-Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-4644a817cce1c7adc1752ab886a9a9235369d159f99087d434f3ff28d61a8e863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>animal models</topic><topic>Antioxidant</topic><topic>antioxidant activity</topic><topic>Antioxidants</topic><topic>Biocompatibility</topic><topic>Biological and medical sciences</topic><topic>Biomedical materials</topic><topic>Fat industries</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hippophae rhamnoides</topic><topic>Hippophae rhamnoides L</topic><topic>In vitro</topic><topic>in vitro studies</topic><topic>In vitro testing</topic><topic>In vivo</topic><topic>in vivo studies</topic><topic>In vivo testing</topic><topic>In vivo tests</topic><topic>medicinal plants</topic><topic>mice</topic><topic>oxidative stress</topic><topic>Seabuckthorn seed oil</topic><topic>seed oils</topic><topic>Seeds</topic><topic>Surgical implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ting, Hung-Chih</creatorcontrib><creatorcontrib>Hsu, Yu-Wen</creatorcontrib><creatorcontrib>Tsai, Chia-Fang</creatorcontrib><creatorcontrib>Lu, Fung-Jou</creatorcontrib><creatorcontrib>Chou, Ming-Chih</creatorcontrib><creatorcontrib>Chen, Wen-Kang</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ting, Hung-Chih</au><au>Hsu, Yu-Wen</au><au>Tsai, Chia-Fang</au><au>Lu, Fung-Jou</au><au>Chou, Ming-Chih</au><au>Chen, Wen-Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The in vitro and in vivo antioxidant properties of seabuckthorn ( Hippophae rhamnoides L.) seed oil</atitle><jtitle>Food chemistry</jtitle><date>2011-03-15</date><risdate>2011</risdate><volume>125</volume><issue>2</issue><spage>652</spage><epage>659</epage><pages>652-659</pages><issn>0308-8146</issn><eissn>1873-7072</eissn><coden>FOCHDJ</coden><abstract>The antioxidant capacity of seabuckthorn (
Hippophae rhamnoides L.) seed oil was investigated with a number of established
in vitro assays and in an
in vivo study of carbon tetrachloride (CCl
4)-induced oxidative stress in mice. The results showed that DPPH radical scavenging activity, ferrous ion chelating activity, reducing power and inhibition of lipid peroxidation activity all increased with increasing concentrations of seabuckthorn seed oil. Moreover, the EC
50 values of seabuckthorn seed oil from the hydrogen peroxide, superoxide radical, hydroxyl radical scavenging assays were 2.63, 2.16 and 0.77
mg/ml, respectively. In the
in vivo study, seabuckthorn seed oil inhibited the toxicity of CCl
4, as seen from the significantly increased activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The GSH content in the liver was also increased, whereas hepatic malondialdehyde was reduced. Taken together, these results clearly indicate that seabuckthorn seed oil has significant potential as a natural antioxidant agent.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.foodchem.2010.09.057</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-8146 |
ispartof | Food chemistry, 2011-03, Vol.125 (2), p.652-659 |
issn | 0308-8146 1873-7072 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520927182 |
source | Elsevier ScienceDirect Journals |
subjects | animal models Antioxidant antioxidant activity Antioxidants Biocompatibility Biological and medical sciences Biomedical materials Fat industries Food industries Fundamental and applied biological sciences. Psychology Hippophae rhamnoides Hippophae rhamnoides L In vitro in vitro studies In vitro testing In vivo in vivo studies In vivo testing In vivo tests medicinal plants mice oxidative stress Seabuckthorn seed oil seed oils Seeds Surgical implants |
title | The in vitro and in vivo antioxidant properties of seabuckthorn ( Hippophae rhamnoides L.) seed oil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20in%20vitro%20and%20in%20vivo%20antioxidant%20properties%20of%20seabuckthorn%20(%20Hippophae%20rhamnoides%20L.)%20seed%20oil&rft.jtitle=Food%20chemistry&rft.au=Ting,%20Hung-Chih&rft.date=2011-03-15&rft.volume=125&rft.issue=2&rft.spage=652&rft.epage=659&rft.pages=652-659&rft.issn=0308-8146&rft.eissn=1873-7072&rft.coden=FOCHDJ&rft_id=info:doi/10.1016/j.foodchem.2010.09.057&rft_dat=%3Cproquest_cross%3E1520927182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520927182&rft_id=info:pmid/&rft_els_id=S0308814610011544&rfr_iscdi=true |