Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity
Summary 1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers’ assessment and interpretation of the single best ‘magic model’. The shortcomings of s...
Gespeichert in:
Veröffentlicht in: | Methods in ecology and evolution 2014-04, Vol.5 (4), p.320-328 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 328 |
---|---|
container_issue | 4 |
container_start_page | 320 |
container_title | Methods in ecology and evolution |
container_volume | 5 |
creator | Ray‐Mukherjee, Jayanti Nimon, Kim Mukherjee, Shomen Morris, Douglas W. Slotow, Rob Hamer, Michelle Nakagawa, Shinichi |
description | Summary
1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers’ assessment and interpretation of the single best ‘magic model’. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to address multicollinearity.
2. We propose that regression commonality analysis (CA), a technique more commonly used in psychology and education research will be helpful in interpreting the typical multiple regression analyses conducted on ecological data.
3. CA decomposes the variance of R2 into unique and common (or shared) variance (or effects) of predictors, and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify the magnitude and location of multicollinearity and suppression in a regression model.
In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection, migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow‐on analysis from multiple regressions. |
doi_str_mv | 10.1111/2041-210X.12166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520390955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520390955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5026-1ea38538f70c23d1ffa6ad8020793d7485e29cfeaba8a116d919090bd3d25ec3</originalsourceid><addsrcrecordid>eNqFkctLAzEQhxdRsGjPXgNevGybR_flTUp9QMVLBW8hzU5qSnazJrvI4j9vtitSvDiHTAjfN4HfRNEVwTMSak7xgsSU4LcZoSRNT6LJ78vp0f08mnq_x6FYXmC6mERfr17XOyRtVdlaGN32SITee-2RrlHVmVY3BpCDnQPvta39LRKotdaEA5UQzMb6YwCBUiDbg9--A1JCArJqnCWtMboG4cJPl9GZEsbD9KdfRJv71Wb5GK9fHp6Wd-tYJpimMQHB8oTlKsOSspIoJVJR5pjirGBltsgToIVUILYiF4SkZUEKXOBtyUqagGQX0c04tnH2owPf8kp7CcaIGmznOUkoZsFIkoBe_0H3tnMhj4EiLCM4z2mg5iMlnfXegeKN05VwPSeYD-vgQ-B8CJwf1hGMdDQ-tYH-P5w_r1ZsFL8BJ_KOOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513710882</pqid></control><display><type>article</type><title>Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity</title><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Ray‐Mukherjee, Jayanti ; Nimon, Kim ; Mukherjee, Shomen ; Morris, Douglas W. ; Slotow, Rob ; Hamer, Michelle ; Nakagawa, Shinichi</creator><contributor>Nakagawa, Shinichi</contributor><creatorcontrib>Ray‐Mukherjee, Jayanti ; Nimon, Kim ; Mukherjee, Shomen ; Morris, Douglas W. ; Slotow, Rob ; Hamer, Michelle ; Nakagawa, Shinichi ; Nakagawa, Shinichi</creatorcontrib><description>Summary
1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers’ assessment and interpretation of the single best ‘magic model’. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to address multicollinearity.
2. We propose that regression commonality analysis (CA), a technique more commonly used in psychology and education research will be helpful in interpreting the typical multiple regression analyses conducted on ecological data.
3. CA decomposes the variance of R2 into unique and common (or shared) variance (or effects) of predictors, and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify the magnitude and location of multicollinearity and suppression in a regression model.
In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection, migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow‐on analysis from multiple regressions.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.12166</identifier><language>eng</language><publisher>London: John Wiley & Sons, Inc</publisher><subject>habitat selection ; hierarchical regression ; Regression analysis ; standardized partial regression coefficient ; stepwise regression ; structure coefficients ; suppressor variable</subject><ispartof>Methods in ecology and evolution, 2014-04, Vol.5 (4), p.320-328</ispartof><rights>2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society</rights><rights>Copyright © 2014 British Ecological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5026-1ea38538f70c23d1ffa6ad8020793d7485e29cfeaba8a116d919090bd3d25ec3</citedby><cites>FETCH-LOGICAL-c5026-1ea38538f70c23d1ffa6ad8020793d7485e29cfeaba8a116d919090bd3d25ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.12166$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.12166$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><contributor>Nakagawa, Shinichi</contributor><creatorcontrib>Ray‐Mukherjee, Jayanti</creatorcontrib><creatorcontrib>Nimon, Kim</creatorcontrib><creatorcontrib>Mukherjee, Shomen</creatorcontrib><creatorcontrib>Morris, Douglas W.</creatorcontrib><creatorcontrib>Slotow, Rob</creatorcontrib><creatorcontrib>Hamer, Michelle</creatorcontrib><creatorcontrib>Nakagawa, Shinichi</creatorcontrib><title>Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity</title><title>Methods in ecology and evolution</title><description>Summary
1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers’ assessment and interpretation of the single best ‘magic model’. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to address multicollinearity.
2. We propose that regression commonality analysis (CA), a technique more commonly used in psychology and education research will be helpful in interpreting the typical multiple regression analyses conducted on ecological data.
3. CA decomposes the variance of R2 into unique and common (or shared) variance (or effects) of predictors, and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify the magnitude and location of multicollinearity and suppression in a regression model.
In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection, migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow‐on analysis from multiple regressions.</description><subject>habitat selection</subject><subject>hierarchical regression</subject><subject>Regression analysis</subject><subject>standardized partial regression coefficient</subject><subject>stepwise regression</subject><subject>structure coefficients</subject><subject>suppressor variable</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkctLAzEQhxdRsGjPXgNevGybR_flTUp9QMVLBW8hzU5qSnazJrvI4j9vtitSvDiHTAjfN4HfRNEVwTMSak7xgsSU4LcZoSRNT6LJ78vp0f08mnq_x6FYXmC6mERfr17XOyRtVdlaGN32SITee-2RrlHVmVY3BpCDnQPvta39LRKotdaEA5UQzMb6YwCBUiDbg9--A1JCArJqnCWtMboG4cJPl9GZEsbD9KdfRJv71Wb5GK9fHp6Wd-tYJpimMQHB8oTlKsOSspIoJVJR5pjirGBltsgToIVUILYiF4SkZUEKXOBtyUqagGQX0c04tnH2owPf8kp7CcaIGmznOUkoZsFIkoBe_0H3tnMhj4EiLCM4z2mg5iMlnfXegeKN05VwPSeYD-vgQ-B8CJwf1hGMdDQ-tYH-P5w_r1ZsFL8BJ_KOOQ</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Ray‐Mukherjee, Jayanti</creator><creator>Nimon, Kim</creator><creator>Mukherjee, Shomen</creator><creator>Morris, Douglas W.</creator><creator>Slotow, Rob</creator><creator>Hamer, Michelle</creator><creator>Nakagawa, Shinichi</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U1</scope><scope>7U2</scope><scope>7U6</scope></search><sort><creationdate>201404</creationdate><title>Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity</title><author>Ray‐Mukherjee, Jayanti ; Nimon, Kim ; Mukherjee, Shomen ; Morris, Douglas W. ; Slotow, Rob ; Hamer, Michelle ; Nakagawa, Shinichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5026-1ea38538f70c23d1ffa6ad8020793d7485e29cfeaba8a116d919090bd3d25ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>habitat selection</topic><topic>hierarchical regression</topic><topic>Regression analysis</topic><topic>standardized partial regression coefficient</topic><topic>stepwise regression</topic><topic>structure coefficients</topic><topic>suppressor variable</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray‐Mukherjee, Jayanti</creatorcontrib><creatorcontrib>Nimon, Kim</creatorcontrib><creatorcontrib>Mukherjee, Shomen</creatorcontrib><creatorcontrib>Morris, Douglas W.</creatorcontrib><creatorcontrib>Slotow, Rob</creatorcontrib><creatorcontrib>Hamer, Michelle</creatorcontrib><creatorcontrib>Nakagawa, Shinichi</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Sustainability Science Abstracts</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ray‐Mukherjee, Jayanti</au><au>Nimon, Kim</au><au>Mukherjee, Shomen</au><au>Morris, Douglas W.</au><au>Slotow, Rob</au><au>Hamer, Michelle</au><au>Nakagawa, Shinichi</au><au>Nakagawa, Shinichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2014-04</date><risdate>2014</risdate><volume>5</volume><issue>4</issue><spage>320</spage><epage>328</epage><pages>320-328</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Summary
1. In the face of natural complexities and multicollinearity, model selection and predictions using multiple regression may be ambiguous and risky. Confounding effects of predictors often cloud researchers’ assessment and interpretation of the single best ‘magic model’. The shortcomings of stepwise regression have been extensively described in statistical literature, yet it is still widely used in ecological literature. Similarly, hierarchical regression which is thought to be an improvement of the stepwise procedure, fails to address multicollinearity.
2. We propose that regression commonality analysis (CA), a technique more commonly used in psychology and education research will be helpful in interpreting the typical multiple regression analyses conducted on ecological data.
3. CA decomposes the variance of R2 into unique and common (or shared) variance (or effects) of predictors, and hence, it can significantly improve exploratory capabilities in studies where multiple regressions are widely used, particularly when predictors are correlated. CA can explicitly identify the magnitude and location of multicollinearity and suppression in a regression model.
In this paper, using a simulated (from a correlation matrix) and an empirical dataset (human habitat selection, migration of Canadians across cities), we demonstrate how CA can be used with correlated predictors in multiple regression to improve our understanding and interpretation of data. We strongly encourage the use of CA in ecological research as a follow‐on analysis from multiple regressions.</abstract><cop>London</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/2041-210X.12166</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-210X |
ispartof | Methods in ecology and evolution, 2014-04, Vol.5 (4), p.320-328 |
issn | 2041-210X 2041-210X |
language | eng |
recordid | cdi_proquest_miscellaneous_1520390955 |
source | Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | habitat selection hierarchical regression Regression analysis standardized partial regression coefficient stepwise regression structure coefficients suppressor variable |
title | Using commonality analysis in multiple regressions: a tool to decompose regression effects in the face of multicollinearity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20commonality%20analysis%20in%20multiple%20regressions:%20a%20tool%20to%20decompose%20regression%20effects%20in%20the%20face%20of%20multicollinearity&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Ray%E2%80%90Mukherjee,%20Jayanti&rft.date=2014-04&rft.volume=5&rft.issue=4&rft.spage=320&rft.epage=328&rft.pages=320-328&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.12166&rft_dat=%3Cproquest_cross%3E1520390955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513710882&rft_id=info:pmid/&rfr_iscdi=true |