Atmospheric contaminants on graphitic surfaces
Kelvin probe force microscopy images show that the surface potential of graphite changes with time as the contamination covers its surface. Using mass spectrometry we identify the molecular mass of the contaminants to be compatible with that of tetracene, a polycyclic aromatic hydrocarbon (PAH), and...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2013-09, Vol.61, p.33-39 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | |
container_start_page | 33 |
container_title | Carbon (New York) |
container_volume | 61 |
creator | Martinez-Martin, David Longuinhos, Raphael Izquierdo, Jesus G. Marele, Antonela Alexandre, Simone S. Jaafar, Miriam Gómez-Rodríguez, Jose M. Bañares, Luis Soler, Jose M. Gomez-Herrero, Julio |
description | Kelvin probe force microscopy images show that the surface potential of graphite changes with time as the contamination covers its surface. Using mass spectrometry we identify the molecular mass of the contaminants to be compatible with that of tetracene, a polycyclic aromatic hydrocarbon (PAH), and its isomers. A combination of desorption and Kelvin probe force microscopy experiments plus theoretical calculations confirms that these molecules are the main contaminant for graphitic surfaces in air ambient conditions. Interestingly, when the sample temperature is increased above ∼50°C the molecules are desorbed and the surface potential becomes fairly homogeneous, suggesting that graphitic surfaces should be almost atomically clean above this temperature. PAHs are potent atmospheric pollutants, potentially carcinogenic, that consist of fused aromatic rings. Incomplete combustion of organic materials can increase the concentration of PAHs in the atmosphere, which in urban regions is enough to totally cover the surface of graphite in a time period that varies from minutes to a few hours. One of the consequences of the adsorption of molecules on graphene is the doping of its surface and the variation of the charge neutrality point originated by the charge transfer between graphene and the contamination layer. |
doi_str_mv | 10.1016/j.carbon.2013.04.056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520390353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622313003527</els_id><sourcerecordid>1520390353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-b88fbf98af2e280c5d32f1ad5a1330bf862c2cbec142cc14f22cc749e8ca2b943</originalsourceid><addsrcrecordid>eNqFkEtLxDAQgIMouK7-Aw97Eby05tU2vQjL4gsWvOg5pNPEzdImNWkF_71ZunjUywzDfDPDfAhdE5wTTMq7fQ4qNN7lFBOWY57jojxBCyIqljFRk1O0wBiLrKSUnaOLGPep5ILwBcrXY-_jsNPBwgq8G1VvnXJjXHm3-ghq2NkxdeIUjAIdL9GZUV3UV8e8RO-PD2-b52z7-vSyWW8z4KUYs0YI05haKEM1FRiKllFDVFsowhhujCgpUGg0EE4hBUNTqnitBSja1Jwt0e28dwj-c9JxlL2NoLtOOe2nKElBMasxK9j_KKdV0lIymlA-oxB8jEEbOQTbq_AtCZYHk3IvZ5PyYFJiLpPJNHZzvKAiqM4E5cDG31laFaRKbyXufuZ0MvNldZARrHagWxs0jLL19u9DP2x4irI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1427013632</pqid></control><display><type>article</type><title>Atmospheric contaminants on graphitic surfaces</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Martinez-Martin, David ; Longuinhos, Raphael ; Izquierdo, Jesus G. ; Marele, Antonela ; Alexandre, Simone S. ; Jaafar, Miriam ; Gómez-Rodríguez, Jose M. ; Bañares, Luis ; Soler, Jose M. ; Gomez-Herrero, Julio</creator><creatorcontrib>Martinez-Martin, David ; Longuinhos, Raphael ; Izquierdo, Jesus G. ; Marele, Antonela ; Alexandre, Simone S. ; Jaafar, Miriam ; Gómez-Rodríguez, Jose M. ; Bañares, Luis ; Soler, Jose M. ; Gomez-Herrero, Julio</creatorcontrib><description>Kelvin probe force microscopy images show that the surface potential of graphite changes with time as the contamination covers its surface. Using mass spectrometry we identify the molecular mass of the contaminants to be compatible with that of tetracene, a polycyclic aromatic hydrocarbon (PAH), and its isomers. A combination of desorption and Kelvin probe force microscopy experiments plus theoretical calculations confirms that these molecules are the main contaminant for graphitic surfaces in air ambient conditions. Interestingly, when the sample temperature is increased above ∼50°C the molecules are desorbed and the surface potential becomes fairly homogeneous, suggesting that graphitic surfaces should be almost atomically clean above this temperature. PAHs are potent atmospheric pollutants, potentially carcinogenic, that consist of fused aromatic rings. Incomplete combustion of organic materials can increase the concentration of PAHs in the atmosphere, which in urban regions is enough to totally cover the surface of graphite in a time period that varies from minutes to a few hours. One of the consequences of the adsorption of molecules on graphene is the doping of its surface and the variation of the charge neutrality point originated by the charge transfer between graphene and the contamination layer.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2013.04.056</identifier><identifier>CODEN: CRBNAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Surface physical chemistry</subject><ispartof>Carbon (New York), 2013-09, Vol.61, p.33-39</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-b88fbf98af2e280c5d32f1ad5a1330bf862c2cbec142cc14f22cc749e8ca2b943</citedby><cites>FETCH-LOGICAL-c468t-b88fbf98af2e280c5d32f1ad5a1330bf862c2cbec142cc14f22cc749e8ca2b943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622313003527$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27517330$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinez-Martin, David</creatorcontrib><creatorcontrib>Longuinhos, Raphael</creatorcontrib><creatorcontrib>Izquierdo, Jesus G.</creatorcontrib><creatorcontrib>Marele, Antonela</creatorcontrib><creatorcontrib>Alexandre, Simone S.</creatorcontrib><creatorcontrib>Jaafar, Miriam</creatorcontrib><creatorcontrib>Gómez-Rodríguez, Jose M.</creatorcontrib><creatorcontrib>Bañares, Luis</creatorcontrib><creatorcontrib>Soler, Jose M.</creatorcontrib><creatorcontrib>Gomez-Herrero, Julio</creatorcontrib><title>Atmospheric contaminants on graphitic surfaces</title><title>Carbon (New York)</title><description>Kelvin probe force microscopy images show that the surface potential of graphite changes with time as the contamination covers its surface. Using mass spectrometry we identify the molecular mass of the contaminants to be compatible with that of tetracene, a polycyclic aromatic hydrocarbon (PAH), and its isomers. A combination of desorption and Kelvin probe force microscopy experiments plus theoretical calculations confirms that these molecules are the main contaminant for graphitic surfaces in air ambient conditions. Interestingly, when the sample temperature is increased above ∼50°C the molecules are desorbed and the surface potential becomes fairly homogeneous, suggesting that graphitic surfaces should be almost atomically clean above this temperature. PAHs are potent atmospheric pollutants, potentially carcinogenic, that consist of fused aromatic rings. Incomplete combustion of organic materials can increase the concentration of PAHs in the atmosphere, which in urban regions is enough to totally cover the surface of graphite in a time period that varies from minutes to a few hours. One of the consequences of the adsorption of molecules on graphene is the doping of its surface and the variation of the charge neutrality point originated by the charge transfer between graphene and the contamination layer.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Surface physical chemistry</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQgIMouK7-Aw97Eby05tU2vQjL4gsWvOg5pNPEzdImNWkF_71ZunjUywzDfDPDfAhdE5wTTMq7fQ4qNN7lFBOWY57jojxBCyIqljFRk1O0wBiLrKSUnaOLGPep5ILwBcrXY-_jsNPBwgq8G1VvnXJjXHm3-ghq2NkxdeIUjAIdL9GZUV3UV8e8RO-PD2-b52z7-vSyWW8z4KUYs0YI05haKEM1FRiKllFDVFsowhhujCgpUGg0EE4hBUNTqnitBSja1Jwt0e28dwj-c9JxlL2NoLtOOe2nKElBMasxK9j_KKdV0lIymlA-oxB8jEEbOQTbq_AtCZYHk3IvZ5PyYFJiLpPJNHZzvKAiqM4E5cDG31laFaRKbyXufuZ0MvNldZARrHagWxs0jLL19u9DP2x4irI</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Martinez-Martin, David</creator><creator>Longuinhos, Raphael</creator><creator>Izquierdo, Jesus G.</creator><creator>Marele, Antonela</creator><creator>Alexandre, Simone S.</creator><creator>Jaafar, Miriam</creator><creator>Gómez-Rodríguez, Jose M.</creator><creator>Bañares, Luis</creator><creator>Soler, Jose M.</creator><creator>Gomez-Herrero, Julio</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>KL.</scope><scope>7T2</scope><scope>7U2</scope></search><sort><creationdate>20130901</creationdate><title>Atmospheric contaminants on graphitic surfaces</title><author>Martinez-Martin, David ; Longuinhos, Raphael ; Izquierdo, Jesus G. ; Marele, Antonela ; Alexandre, Simone S. ; Jaafar, Miriam ; Gómez-Rodríguez, Jose M. ; Bañares, Luis ; Soler, Jose M. ; Gomez-Herrero, Julio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-b88fbf98af2e280c5d32f1ad5a1330bf862c2cbec142cc14f22cc749e8ca2b943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Martin, David</creatorcontrib><creatorcontrib>Longuinhos, Raphael</creatorcontrib><creatorcontrib>Izquierdo, Jesus G.</creatorcontrib><creatorcontrib>Marele, Antonela</creatorcontrib><creatorcontrib>Alexandre, Simone S.</creatorcontrib><creatorcontrib>Jaafar, Miriam</creatorcontrib><creatorcontrib>Gómez-Rodríguez, Jose M.</creatorcontrib><creatorcontrib>Bañares, Luis</creatorcontrib><creatorcontrib>Soler, Jose M.</creatorcontrib><creatorcontrib>Gomez-Herrero, Julio</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Martin, David</au><au>Longuinhos, Raphael</au><au>Izquierdo, Jesus G.</au><au>Marele, Antonela</au><au>Alexandre, Simone S.</au><au>Jaafar, Miriam</au><au>Gómez-Rodríguez, Jose M.</au><au>Bañares, Luis</au><au>Soler, Jose M.</au><au>Gomez-Herrero, Julio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atmospheric contaminants on graphitic surfaces</atitle><jtitle>Carbon (New York)</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>61</volume><spage>33</spage><epage>39</epage><pages>33-39</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><coden>CRBNAH</coden><abstract>Kelvin probe force microscopy images show that the surface potential of graphite changes with time as the contamination covers its surface. Using mass spectrometry we identify the molecular mass of the contaminants to be compatible with that of tetracene, a polycyclic aromatic hydrocarbon (PAH), and its isomers. A combination of desorption and Kelvin probe force microscopy experiments plus theoretical calculations confirms that these molecules are the main contaminant for graphitic surfaces in air ambient conditions. Interestingly, when the sample temperature is increased above ∼50°C the molecules are desorbed and the surface potential becomes fairly homogeneous, suggesting that graphitic surfaces should be almost atomically clean above this temperature. PAHs are potent atmospheric pollutants, potentially carcinogenic, that consist of fused aromatic rings. Incomplete combustion of organic materials can increase the concentration of PAHs in the atmosphere, which in urban regions is enough to totally cover the surface of graphite in a time period that varies from minutes to a few hours. One of the consequences of the adsorption of molecules on graphene is the doping of its surface and the variation of the charge neutrality point originated by the charge transfer between graphene and the contamination layer.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2013.04.056</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2013-09, Vol.61, p.33-39 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520390353 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Chemistry Exact sciences and technology General and physical chemistry Surface physical chemistry |
title | Atmospheric contaminants on graphitic surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T10%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atmospheric%20contaminants%20on%20graphitic%20surfaces&rft.jtitle=Carbon%20(New%20York)&rft.au=Martinez-Martin,%20David&rft.date=2013-09-01&rft.volume=61&rft.spage=33&rft.epage=39&rft.pages=33-39&rft.issn=0008-6223&rft.eissn=1873-3891&rft.coden=CRBNAH&rft_id=info:doi/10.1016/j.carbon.2013.04.056&rft_dat=%3Cproquest_cross%3E1520390353%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1427013632&rft_id=info:pmid/&rft_els_id=S0008622313003527&rfr_iscdi=true |