Quantification of N sub(2)O emission pathways via a super(15)N tracing model

A super(15)N tracing model was developed to analyse nitrous oxide (N sub(2)O) dynamics in terrestrial ecosystems, which build on previous tracing models for the quantification of the main mineral nitrogen (N) transformations and soil nitrite (NO sub(2) super(-)) dynamics. The N sub(2)O dynamics in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil biology & biochemistry 2014-05, Vol.72, p.44-54
Hauptverfasser: Mueller, Christoph, Laughlin, Ronnie J, Spott, Oliver, Ruetting, Tobias
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue
container_start_page 44
container_title Soil biology & biochemistry
container_volume 72
creator Mueller, Christoph
Laughlin, Ronnie J
Spott, Oliver
Ruetting, Tobias
description A super(15)N tracing model was developed to analyse nitrous oxide (N sub(2)O) dynamics in terrestrial ecosystems, which build on previous tracing models for the quantification of the main mineral nitrogen (N) transformations and soil nitrite (NO sub(2) super(-)) dynamics. The N sub(2)O dynamics in the model are directly associated with three NO sub(2) super(-) sub-pools. Four pathways for N sub(2)O production in soil were considered in the model: i) reduction of NO sub(2) super(-) associated with nitrification (NO sub(2) super(-) sub(nit) arrow right N sub(2)O sub(nit)), ii) reduction of NO sub(2) super(-) associated with denitrification (NO sub(2) super(-) sub(den) arrow right N sub(2)O sub(den)), iii) reduction of NO sub(2) super(-) associated with organic N (N sub(org)) oxidation (NO sub(2) super(-) sub(org) arrow right N sub(2)O sub(org)), and iv) codenitrification (N sub(2)O sub(cod)), a hybrid reaction where one N atom in N sub(2)O originates from organic N and the other from NO sub(2) super(-) sub(den). Soil N sub(2)O can further be reduced to N sub(2) and/or can be emitted to the atmosphere. The reaction kinetics and emission notations are based on first-order approaches. Parameter optimization was carried out with a Markov Chain Monte Carlo (MCMC) technique that is suitable for models with large number of parameters. The super(15)N tracing tool was tested with a data set from a super(15)N tracing study on grassland soil. Tracing model results showed that on average over a 12 day period N sub(2)O sub(nit), N sub(2)O sub(den), N sub(2)O sub(org) and N sub(2)O sub(cod) contributed 9%, 20%, 54% and 18% to the total N sub(2)O emission, respectively. The results are in line with estimates based on analytical approaches that consider three N sub(2)O emission pathways. The strength of this new super(15)N tracing tool is that for the first time four N sub(2)O emission pathways, including a hybrid-reaction, can simultaneously be quantified. The analysis highlights that heterotrophic processes related to organic N turnover and neither autotrophic nitrification nor denitrification may be the prevailing pathways for N sub(2)O production in old grassland soil. The underlying NO sub(2) super(-) and N sub(2)O reduction kinetics are in agreement with denitrification gene expressions and the calculated N sub(2)/N sub(2)O ratios are in the expected range. The tracing model provides insights on N dynamics which may occur in soil microsites. This information is import
doi_str_mv 10.1016/j.soilbio.2014.01.013
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520388248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520388248</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_15203882483</originalsourceid><addsrcrecordid>eNqVjs0KwjAQhHNQ8PcRhBzrwbqbWu1dFA-iCN7LWlONxKZ2U8W3t4IvIAwMzDcMI8QIIUTA-fQWsjP2ZFyoAGchYKOoJboAUTKBBS46osd8AwAVY9QV20NNhTe5ycgbV0iXy53k-hSo8V7qu2H-piX564veLJ-GJDW81FWA8XgnfUWZKS7y7s7aDkQ7J8t6-PO-CNar43IzKSv3qDX7tBnMtLVUaFdzirFqbiVqlkR_VD8mMUbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520388248</pqid></control><display><type>article</type><title>Quantification of N sub(2)O emission pathways via a super(15)N tracing model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mueller, Christoph ; Laughlin, Ronnie J ; Spott, Oliver ; Ruetting, Tobias</creator><creatorcontrib>Mueller, Christoph ; Laughlin, Ronnie J ; Spott, Oliver ; Ruetting, Tobias</creatorcontrib><description>A super(15)N tracing model was developed to analyse nitrous oxide (N sub(2)O) dynamics in terrestrial ecosystems, which build on previous tracing models for the quantification of the main mineral nitrogen (N) transformations and soil nitrite (NO sub(2) super(-)) dynamics. The N sub(2)O dynamics in the model are directly associated with three NO sub(2) super(-) sub-pools. Four pathways for N sub(2)O production in soil were considered in the model: i) reduction of NO sub(2) super(-) associated with nitrification (NO sub(2) super(-) sub(nit) arrow right N sub(2)O sub(nit)), ii) reduction of NO sub(2) super(-) associated with denitrification (NO sub(2) super(-) sub(den) arrow right N sub(2)O sub(den)), iii) reduction of NO sub(2) super(-) associated with organic N (N sub(org)) oxidation (NO sub(2) super(-) sub(org) arrow right N sub(2)O sub(org)), and iv) codenitrification (N sub(2)O sub(cod)), a hybrid reaction where one N atom in N sub(2)O originates from organic N and the other from NO sub(2) super(-) sub(den). Soil N sub(2)O can further be reduced to N sub(2) and/or can be emitted to the atmosphere. The reaction kinetics and emission notations are based on first-order approaches. Parameter optimization was carried out with a Markov Chain Monte Carlo (MCMC) technique that is suitable for models with large number of parameters. The super(15)N tracing tool was tested with a data set from a super(15)N tracing study on grassland soil. Tracing model results showed that on average over a 12 day period N sub(2)O sub(nit), N sub(2)O sub(den), N sub(2)O sub(org) and N sub(2)O sub(cod) contributed 9%, 20%, 54% and 18% to the total N sub(2)O emission, respectively. The results are in line with estimates based on analytical approaches that consider three N sub(2)O emission pathways. The strength of this new super(15)N tracing tool is that for the first time four N sub(2)O emission pathways, including a hybrid-reaction, can simultaneously be quantified. The analysis highlights that heterotrophic processes related to organic N turnover and neither autotrophic nitrification nor denitrification may be the prevailing pathways for N sub(2)O production in old grassland soil. The underlying NO sub(2) super(-) and N sub(2)O reduction kinetics are in agreement with denitrification gene expressions and the calculated N sub(2)/N sub(2)O ratios are in the expected range. The tracing model provides insights on N dynamics which may occur in soil microsites. This information is important for the development of more realistic representations of soil N cycling in ecosystem models.</description><identifier>ISSN: 0038-0717</identifier><identifier>DOI: 10.1016/j.soilbio.2014.01.013</identifier><language>eng</language><ispartof>Soil biology &amp; biochemistry, 2014-05, Vol.72, p.44-54</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mueller, Christoph</creatorcontrib><creatorcontrib>Laughlin, Ronnie J</creatorcontrib><creatorcontrib>Spott, Oliver</creatorcontrib><creatorcontrib>Ruetting, Tobias</creatorcontrib><title>Quantification of N sub(2)O emission pathways via a super(15)N tracing model</title><title>Soil biology &amp; biochemistry</title><description>A super(15)N tracing model was developed to analyse nitrous oxide (N sub(2)O) dynamics in terrestrial ecosystems, which build on previous tracing models for the quantification of the main mineral nitrogen (N) transformations and soil nitrite (NO sub(2) super(-)) dynamics. The N sub(2)O dynamics in the model are directly associated with three NO sub(2) super(-) sub-pools. Four pathways for N sub(2)O production in soil were considered in the model: i) reduction of NO sub(2) super(-) associated with nitrification (NO sub(2) super(-) sub(nit) arrow right N sub(2)O sub(nit)), ii) reduction of NO sub(2) super(-) associated with denitrification (NO sub(2) super(-) sub(den) arrow right N sub(2)O sub(den)), iii) reduction of NO sub(2) super(-) associated with organic N (N sub(org)) oxidation (NO sub(2) super(-) sub(org) arrow right N sub(2)O sub(org)), and iv) codenitrification (N sub(2)O sub(cod)), a hybrid reaction where one N atom in N sub(2)O originates from organic N and the other from NO sub(2) super(-) sub(den). Soil N sub(2)O can further be reduced to N sub(2) and/or can be emitted to the atmosphere. The reaction kinetics and emission notations are based on first-order approaches. Parameter optimization was carried out with a Markov Chain Monte Carlo (MCMC) technique that is suitable for models with large number of parameters. The super(15)N tracing tool was tested with a data set from a super(15)N tracing study on grassland soil. Tracing model results showed that on average over a 12 day period N sub(2)O sub(nit), N sub(2)O sub(den), N sub(2)O sub(org) and N sub(2)O sub(cod) contributed 9%, 20%, 54% and 18% to the total N sub(2)O emission, respectively. The results are in line with estimates based on analytical approaches that consider three N sub(2)O emission pathways. The strength of this new super(15)N tracing tool is that for the first time four N sub(2)O emission pathways, including a hybrid-reaction, can simultaneously be quantified. The analysis highlights that heterotrophic processes related to organic N turnover and neither autotrophic nitrification nor denitrification may be the prevailing pathways for N sub(2)O production in old grassland soil. The underlying NO sub(2) super(-) and N sub(2)O reduction kinetics are in agreement with denitrification gene expressions and the calculated N sub(2)/N sub(2)O ratios are in the expected range. The tracing model provides insights on N dynamics which may occur in soil microsites. This information is important for the development of more realistic representations of soil N cycling in ecosystem models.</description><issn>0038-0717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVjs0KwjAQhHNQ8PcRhBzrwbqbWu1dFA-iCN7LWlONxKZ2U8W3t4IvIAwMzDcMI8QIIUTA-fQWsjP2ZFyoAGchYKOoJboAUTKBBS46osd8AwAVY9QV20NNhTe5ycgbV0iXy53k-hSo8V7qu2H-piX564veLJ-GJDW81FWA8XgnfUWZKS7y7s7aDkQ7J8t6-PO-CNar43IzKSv3qDX7tBnMtLVUaFdzirFqbiVqlkR_VD8mMUbs</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Mueller, Christoph</creator><creator>Laughlin, Ronnie J</creator><creator>Spott, Oliver</creator><creator>Ruetting, Tobias</creator><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20140501</creationdate><title>Quantification of N sub(2)O emission pathways via a super(15)N tracing model</title><author>Mueller, Christoph ; Laughlin, Ronnie J ; Spott, Oliver ; Ruetting, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_15203882483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mueller, Christoph</creatorcontrib><creatorcontrib>Laughlin, Ronnie J</creatorcontrib><creatorcontrib>Spott, Oliver</creatorcontrib><creatorcontrib>Ruetting, Tobias</creatorcontrib><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Soil biology &amp; biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mueller, Christoph</au><au>Laughlin, Ronnie J</au><au>Spott, Oliver</au><au>Ruetting, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of N sub(2)O emission pathways via a super(15)N tracing model</atitle><jtitle>Soil biology &amp; biochemistry</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>72</volume><spage>44</spage><epage>54</epage><pages>44-54</pages><issn>0038-0717</issn><abstract>A super(15)N tracing model was developed to analyse nitrous oxide (N sub(2)O) dynamics in terrestrial ecosystems, which build on previous tracing models for the quantification of the main mineral nitrogen (N) transformations and soil nitrite (NO sub(2) super(-)) dynamics. The N sub(2)O dynamics in the model are directly associated with three NO sub(2) super(-) sub-pools. Four pathways for N sub(2)O production in soil were considered in the model: i) reduction of NO sub(2) super(-) associated with nitrification (NO sub(2) super(-) sub(nit) arrow right N sub(2)O sub(nit)), ii) reduction of NO sub(2) super(-) associated with denitrification (NO sub(2) super(-) sub(den) arrow right N sub(2)O sub(den)), iii) reduction of NO sub(2) super(-) associated with organic N (N sub(org)) oxidation (NO sub(2) super(-) sub(org) arrow right N sub(2)O sub(org)), and iv) codenitrification (N sub(2)O sub(cod)), a hybrid reaction where one N atom in N sub(2)O originates from organic N and the other from NO sub(2) super(-) sub(den). Soil N sub(2)O can further be reduced to N sub(2) and/or can be emitted to the atmosphere. The reaction kinetics and emission notations are based on first-order approaches. Parameter optimization was carried out with a Markov Chain Monte Carlo (MCMC) technique that is suitable for models with large number of parameters. The super(15)N tracing tool was tested with a data set from a super(15)N tracing study on grassland soil. Tracing model results showed that on average over a 12 day period N sub(2)O sub(nit), N sub(2)O sub(den), N sub(2)O sub(org) and N sub(2)O sub(cod) contributed 9%, 20%, 54% and 18% to the total N sub(2)O emission, respectively. The results are in line with estimates based on analytical approaches that consider three N sub(2)O emission pathways. The strength of this new super(15)N tracing tool is that for the first time four N sub(2)O emission pathways, including a hybrid-reaction, can simultaneously be quantified. The analysis highlights that heterotrophic processes related to organic N turnover and neither autotrophic nitrification nor denitrification may be the prevailing pathways for N sub(2)O production in old grassland soil. The underlying NO sub(2) super(-) and N sub(2)O reduction kinetics are in agreement with denitrification gene expressions and the calculated N sub(2)/N sub(2)O ratios are in the expected range. The tracing model provides insights on N dynamics which may occur in soil microsites. This information is important for the development of more realistic representations of soil N cycling in ecosystem models.</abstract><doi>10.1016/j.soilbio.2014.01.013</doi></addata></record>
fulltext fulltext
identifier ISSN: 0038-0717
ispartof Soil biology & biochemistry, 2014-05, Vol.72, p.44-54
issn 0038-0717
language eng
recordid cdi_proquest_miscellaneous_1520388248
source Access via ScienceDirect (Elsevier)
title Quantification of N sub(2)O emission pathways via a super(15)N tracing model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20N%20sub(2)O%20emission%20pathways%20via%20a%20super(15)N%20tracing%20model&rft.jtitle=Soil%20biology%20&%20biochemistry&rft.au=Mueller,%20Christoph&rft.date=2014-05-01&rft.volume=72&rft.spage=44&rft.epage=54&rft.pages=44-54&rft.issn=0038-0717&rft_id=info:doi/10.1016/j.soilbio.2014.01.013&rft_dat=%3Cproquest%3E1520388248%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520388248&rft_id=info:pmid/&rfr_iscdi=true