Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome

Purpose Radiotherapy of head and neck cancer induces changes in tumour cell proliferation during treatment, which can be depicted by the PET tracer 18 F-fluorothymidine (FLT). In this study, three advanced semiautomatic PET segmentation methods for delineation of the proliferative tumour volume (PV)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nuclear medicine and molecular imaging 2014-05, Vol.41 (5), p.915-924
Hauptverfasser: Arens, Anne I. J., Troost, Esther G. C., Hoeben, Bianca A. W., Grootjans, Willem, Lee, John A., Grégoire, Vincent, Hatt, Mathieu, Visvikis, Dimitris, Bussink, Johan, Oyen, Wim J. G., Kaanders, Johannes H. A. M., Visser, Eric P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 924
container_issue 5
container_start_page 915
container_title European journal of nuclear medicine and molecular imaging
container_volume 41
creator Arens, Anne I. J.
Troost, Esther G. C.
Hoeben, Bianca A. W.
Grootjans, Willem
Lee, John A.
Grégoire, Vincent
Hatt, Mathieu
Visvikis, Dimitris
Bussink, Johan
Oyen, Wim J. G.
Kaanders, Johannes H. A. M.
Visser, Eric P.
description Purpose Radiotherapy of head and neck cancer induces changes in tumour cell proliferation during treatment, which can be depicted by the PET tracer 18 F-fluorothymidine (FLT). In this study, three advanced semiautomatic PET segmentation methods for delineation of the proliferative tumour volume (PV) before and during (chemo)radiotherapy were compared and related to clinical outcome. Methods The study group comprised 46 patients with 48 squamous cell carcinomas of the head and neck, treated with accelerated (chemo)radiotherapy, who underwent FLT PET/CT prior to treatment and in the 2nd and 4th week of therapy. Primary gross tumour volumes were visually delineated on CT images (GTV CT ). PVs were visually determined on all PET scans (PV VIS ). The following semiautomatic segmentation methods were applied to sequential PET scans: background-subtracted relative-threshold level (PV RTL ), a gradient-based method using the watershed transform algorithm and hierarchical clustering analysis (PV W&C ), and a fuzzy locally adaptive Bayesian algorithm (PV FLAB ). Results Pretreatment PV VIS correlated best with PV FLAB and GTV CT . Correlations with PV RTL and PV W&C were weaker although statistically significant. During treatment, the PV VIS , PV W&C and PV FLAB significant decreased over time with the steepest decline over time for PV FLAB . Among these advanced segmentation methods, PV FLAB was the most robust in segmenting volumes in the third scan (67 % of tumours as compared to 40 % for PV W&C and 27 % for PV RTL ). A decrease in PV FLAB above the median between the pretreatment scan and the scan obtained in the 4th week was associated with better disease-free survival (4 years 90 % versus 53 %). Conclusion In patients with head and neck cancer, FLAB proved to be the best performing method for segmentation of the PV on repeat FLT PET/CT scans during (chemo)radiotherapy. This may potentially facilitate radiation dose adaptation to changing PV.
doi_str_mv 10.1007/s00259-013-2651-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520386386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3268407921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-fdf0f31b4eb6787d99c67bc621b09c742d975ed22d6fd06e68c1ef4b60f125e03</originalsourceid><addsrcrecordid>eNp1kd9qFDEUxoMotl19AG_kgDfejE0yM5nJpSytFhYUXK-HmeRkN3WS1CRT8J18SLNOLSIIgYST3_nOn4-QV4y-Y5R2l4lS3sqKsrriomUVfULOmWCy6mgvnz6-O3pGLlK6pZT1vJfPyRlv6kY0rDknP7-gs-OSgxuzVeAwH4NOYEKEhAeHPpd48BAM5CPCXQyzNRhL8B4hLy4sEe7DvDiEQiX8vpQUO85wvdvD56v95XYP1o0HTGA9HHHUMHoNHtU3UGNU1pfK6Xes6NsIEee1Yg6gZuutKmJhySo4fEGemXFO-PLh3pCv11f77cdq9-nDzfb9rlINbXNltKGmZlODk-j6TkupRDcpwdlEpeoarmXXouZcC6OpQNErhqaZBDWMt0jrDXm76pZxy0ApD84mhfM8egxLGljLad2L09mQN_-gt2UlvnRXKFZzKVrZFIqtlIohpYhmuItlK_HHwOhwsnJYrRyKlcPJyuHUxOsH5WVyqB8z_nhXAL4CqXz5A8a_Sv9X9RdPl6wK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513296594</pqid></control><display><type>article</type><title>Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Arens, Anne I. J. ; Troost, Esther G. C. ; Hoeben, Bianca A. W. ; Grootjans, Willem ; Lee, John A. ; Grégoire, Vincent ; Hatt, Mathieu ; Visvikis, Dimitris ; Bussink, Johan ; Oyen, Wim J. G. ; Kaanders, Johannes H. A. M. ; Visser, Eric P.</creator><creatorcontrib>Arens, Anne I. J. ; Troost, Esther G. C. ; Hoeben, Bianca A. W. ; Grootjans, Willem ; Lee, John A. ; Grégoire, Vincent ; Hatt, Mathieu ; Visvikis, Dimitris ; Bussink, Johan ; Oyen, Wim J. G. ; Kaanders, Johannes H. A. M. ; Visser, Eric P.</creatorcontrib><description>Purpose Radiotherapy of head and neck cancer induces changes in tumour cell proliferation during treatment, which can be depicted by the PET tracer 18 F-fluorothymidine (FLT). In this study, three advanced semiautomatic PET segmentation methods for delineation of the proliferative tumour volume (PV) before and during (chemo)radiotherapy were compared and related to clinical outcome. Methods The study group comprised 46 patients with 48 squamous cell carcinomas of the head and neck, treated with accelerated (chemo)radiotherapy, who underwent FLT PET/CT prior to treatment and in the 2nd and 4th week of therapy. Primary gross tumour volumes were visually delineated on CT images (GTV CT ). PVs were visually determined on all PET scans (PV VIS ). The following semiautomatic segmentation methods were applied to sequential PET scans: background-subtracted relative-threshold level (PV RTL ), a gradient-based method using the watershed transform algorithm and hierarchical clustering analysis (PV W&amp;C ), and a fuzzy locally adaptive Bayesian algorithm (PV FLAB ). Results Pretreatment PV VIS correlated best with PV FLAB and GTV CT . Correlations with PV RTL and PV W&amp;C were weaker although statistically significant. During treatment, the PV VIS , PV W&amp;C and PV FLAB significant decreased over time with the steepest decline over time for PV FLAB . Among these advanced segmentation methods, PV FLAB was the most robust in segmenting volumes in the third scan (67 % of tumours as compared to 40 % for PV W&amp;C and 27 % for PV RTL ). A decrease in PV FLAB above the median between the pretreatment scan and the scan obtained in the 4th week was associated with better disease-free survival (4 years 90 % versus 53 %). Conclusion In patients with head and neck cancer, FLAB proved to be the best performing method for segmentation of the PV on repeat FLT PET/CT scans during (chemo)radiotherapy. This may potentially facilitate radiation dose adaptation to changing PV.</description><identifier>ISSN: 1619-7070</identifier><identifier>EISSN: 1619-7089</identifier><identifier>DOI: 10.1007/s00259-013-2651-0</identifier><identifier>PMID: 24346414</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Aged ; Carcinoma, Squamous Cell - diagnostic imaging ; Carcinoma, Squamous Cell - pathology ; Cardiology ; Clinical outcomes ; Dideoxynucleosides ; Drug therapy ; Female ; Head &amp; neck cancer ; Head and Neck Neoplasms - diagnostic imaging ; Head and Neck Neoplasms - pathology ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging ; Male ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Multimodal Imaging ; Nuclear Medicine ; Oncology ; Original Article ; Orthopedics ; Positron-Emission Tomography ; Prognosis ; Radiology ; Radiopharmaceuticals ; Tomography, X-Ray Computed ; Tumor Burden ; Tumors</subject><ispartof>European journal of nuclear medicine and molecular imaging, 2014-05, Vol.41 (5), p.915-924</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-fdf0f31b4eb6787d99c67bc621b09c742d975ed22d6fd06e68c1ef4b60f125e03</citedby><cites>FETCH-LOGICAL-c405t-fdf0f31b4eb6787d99c67bc621b09c742d975ed22d6fd06e68c1ef4b60f125e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00259-013-2651-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00259-013-2651-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24346414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arens, Anne I. J.</creatorcontrib><creatorcontrib>Troost, Esther G. C.</creatorcontrib><creatorcontrib>Hoeben, Bianca A. W.</creatorcontrib><creatorcontrib>Grootjans, Willem</creatorcontrib><creatorcontrib>Lee, John A.</creatorcontrib><creatorcontrib>Grégoire, Vincent</creatorcontrib><creatorcontrib>Hatt, Mathieu</creatorcontrib><creatorcontrib>Visvikis, Dimitris</creatorcontrib><creatorcontrib>Bussink, Johan</creatorcontrib><creatorcontrib>Oyen, Wim J. G.</creatorcontrib><creatorcontrib>Kaanders, Johannes H. A. M.</creatorcontrib><creatorcontrib>Visser, Eric P.</creatorcontrib><title>Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome</title><title>European journal of nuclear medicine and molecular imaging</title><addtitle>Eur J Nucl Med Mol Imaging</addtitle><addtitle>Eur J Nucl Med Mol Imaging</addtitle><description>Purpose Radiotherapy of head and neck cancer induces changes in tumour cell proliferation during treatment, which can be depicted by the PET tracer 18 F-fluorothymidine (FLT). In this study, three advanced semiautomatic PET segmentation methods for delineation of the proliferative tumour volume (PV) before and during (chemo)radiotherapy were compared and related to clinical outcome. Methods The study group comprised 46 patients with 48 squamous cell carcinomas of the head and neck, treated with accelerated (chemo)radiotherapy, who underwent FLT PET/CT prior to treatment and in the 2nd and 4th week of therapy. Primary gross tumour volumes were visually delineated on CT images (GTV CT ). PVs were visually determined on all PET scans (PV VIS ). The following semiautomatic segmentation methods were applied to sequential PET scans: background-subtracted relative-threshold level (PV RTL ), a gradient-based method using the watershed transform algorithm and hierarchical clustering analysis (PV W&amp;C ), and a fuzzy locally adaptive Bayesian algorithm (PV FLAB ). Results Pretreatment PV VIS correlated best with PV FLAB and GTV CT . Correlations with PV RTL and PV W&amp;C were weaker although statistically significant. During treatment, the PV VIS , PV W&amp;C and PV FLAB significant decreased over time with the steepest decline over time for PV FLAB . Among these advanced segmentation methods, PV FLAB was the most robust in segmenting volumes in the third scan (67 % of tumours as compared to 40 % for PV W&amp;C and 27 % for PV RTL ). A decrease in PV FLAB above the median between the pretreatment scan and the scan obtained in the 4th week was associated with better disease-free survival (4 years 90 % versus 53 %). Conclusion In patients with head and neck cancer, FLAB proved to be the best performing method for segmentation of the PV on repeat FLT PET/CT scans during (chemo)radiotherapy. This may potentially facilitate radiation dose adaptation to changing PV.</description><subject>Adult</subject><subject>Aged</subject><subject>Carcinoma, Squamous Cell - diagnostic imaging</subject><subject>Carcinoma, Squamous Cell - pathology</subject><subject>Cardiology</subject><subject>Clinical outcomes</subject><subject>Dideoxynucleosides</subject><subject>Drug therapy</subject><subject>Female</subject><subject>Head &amp; neck cancer</subject><subject>Head and Neck Neoplasms - diagnostic imaging</subject><subject>Head and Neck Neoplasms - pathology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Multimodal Imaging</subject><subject>Nuclear Medicine</subject><subject>Oncology</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Positron-Emission Tomography</subject><subject>Prognosis</subject><subject>Radiology</subject><subject>Radiopharmaceuticals</subject><subject>Tomography, X-Ray Computed</subject><subject>Tumor Burden</subject><subject>Tumors</subject><issn>1619-7070</issn><issn>1619-7089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kd9qFDEUxoMotl19AG_kgDfejE0yM5nJpSytFhYUXK-HmeRkN3WS1CRT8J18SLNOLSIIgYST3_nOn4-QV4y-Y5R2l4lS3sqKsrriomUVfULOmWCy6mgvnz6-O3pGLlK6pZT1vJfPyRlv6kY0rDknP7-gs-OSgxuzVeAwH4NOYEKEhAeHPpd48BAM5CPCXQyzNRhL8B4hLy4sEe7DvDiEQiX8vpQUO85wvdvD56v95XYP1o0HTGA9HHHUMHoNHtU3UGNU1pfK6Xes6NsIEee1Yg6gZuutKmJhySo4fEGemXFO-PLh3pCv11f77cdq9-nDzfb9rlINbXNltKGmZlODk-j6TkupRDcpwdlEpeoarmXXouZcC6OpQNErhqaZBDWMt0jrDXm76pZxy0ApD84mhfM8egxLGljLad2L09mQN_-gt2UlvnRXKFZzKVrZFIqtlIohpYhmuItlK_HHwOhwsnJYrRyKlcPJyuHUxOsH5WVyqB8z_nhXAL4CqXz5A8a_Sv9X9RdPl6wK</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Arens, Anne I. J.</creator><creator>Troost, Esther G. C.</creator><creator>Hoeben, Bianca A. W.</creator><creator>Grootjans, Willem</creator><creator>Lee, John A.</creator><creator>Grégoire, Vincent</creator><creator>Hatt, Mathieu</creator><creator>Visvikis, Dimitris</creator><creator>Bussink, Johan</creator><creator>Oyen, Wim J. G.</creator><creator>Kaanders, Johannes H. A. M.</creator><creator>Visser, Eric P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140501</creationdate><title>Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome</title><author>Arens, Anne I. J. ; Troost, Esther G. C. ; Hoeben, Bianca A. W. ; Grootjans, Willem ; Lee, John A. ; Grégoire, Vincent ; Hatt, Mathieu ; Visvikis, Dimitris ; Bussink, Johan ; Oyen, Wim J. G. ; Kaanders, Johannes H. A. M. ; Visser, Eric P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-fdf0f31b4eb6787d99c67bc621b09c742d975ed22d6fd06e68c1ef4b60f125e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Carcinoma, Squamous Cell - diagnostic imaging</topic><topic>Carcinoma, Squamous Cell - pathology</topic><topic>Cardiology</topic><topic>Clinical outcomes</topic><topic>Dideoxynucleosides</topic><topic>Drug therapy</topic><topic>Female</topic><topic>Head &amp; neck cancer</topic><topic>Head and Neck Neoplasms - diagnostic imaging</topic><topic>Head and Neck Neoplasms - pathology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Multimodal Imaging</topic><topic>Nuclear Medicine</topic><topic>Oncology</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Positron-Emission Tomography</topic><topic>Prognosis</topic><topic>Radiology</topic><topic>Radiopharmaceuticals</topic><topic>Tomography, X-Ray Computed</topic><topic>Tumor Burden</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arens, Anne I. J.</creatorcontrib><creatorcontrib>Troost, Esther G. C.</creatorcontrib><creatorcontrib>Hoeben, Bianca A. W.</creatorcontrib><creatorcontrib>Grootjans, Willem</creatorcontrib><creatorcontrib>Lee, John A.</creatorcontrib><creatorcontrib>Grégoire, Vincent</creatorcontrib><creatorcontrib>Hatt, Mathieu</creatorcontrib><creatorcontrib>Visvikis, Dimitris</creatorcontrib><creatorcontrib>Bussink, Johan</creatorcontrib><creatorcontrib>Oyen, Wim J. G.</creatorcontrib><creatorcontrib>Kaanders, Johannes H. A. M.</creatorcontrib><creatorcontrib>Visser, Eric P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>European journal of nuclear medicine and molecular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arens, Anne I. J.</au><au>Troost, Esther G. C.</au><au>Hoeben, Bianca A. W.</au><au>Grootjans, Willem</au><au>Lee, John A.</au><au>Grégoire, Vincent</au><au>Hatt, Mathieu</au><au>Visvikis, Dimitris</au><au>Bussink, Johan</au><au>Oyen, Wim J. G.</au><au>Kaanders, Johannes H. A. M.</au><au>Visser, Eric P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome</atitle><jtitle>European journal of nuclear medicine and molecular imaging</jtitle><stitle>Eur J Nucl Med Mol Imaging</stitle><addtitle>Eur J Nucl Med Mol Imaging</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>41</volume><issue>5</issue><spage>915</spage><epage>924</epage><pages>915-924</pages><issn>1619-7070</issn><eissn>1619-7089</eissn><abstract>Purpose Radiotherapy of head and neck cancer induces changes in tumour cell proliferation during treatment, which can be depicted by the PET tracer 18 F-fluorothymidine (FLT). In this study, three advanced semiautomatic PET segmentation methods for delineation of the proliferative tumour volume (PV) before and during (chemo)radiotherapy were compared and related to clinical outcome. Methods The study group comprised 46 patients with 48 squamous cell carcinomas of the head and neck, treated with accelerated (chemo)radiotherapy, who underwent FLT PET/CT prior to treatment and in the 2nd and 4th week of therapy. Primary gross tumour volumes were visually delineated on CT images (GTV CT ). PVs were visually determined on all PET scans (PV VIS ). The following semiautomatic segmentation methods were applied to sequential PET scans: background-subtracted relative-threshold level (PV RTL ), a gradient-based method using the watershed transform algorithm and hierarchical clustering analysis (PV W&amp;C ), and a fuzzy locally adaptive Bayesian algorithm (PV FLAB ). Results Pretreatment PV VIS correlated best with PV FLAB and GTV CT . Correlations with PV RTL and PV W&amp;C were weaker although statistically significant. During treatment, the PV VIS , PV W&amp;C and PV FLAB significant decreased over time with the steepest decline over time for PV FLAB . Among these advanced segmentation methods, PV FLAB was the most robust in segmenting volumes in the third scan (67 % of tumours as compared to 40 % for PV W&amp;C and 27 % for PV RTL ). A decrease in PV FLAB above the median between the pretreatment scan and the scan obtained in the 4th week was associated with better disease-free survival (4 years 90 % versus 53 %). Conclusion In patients with head and neck cancer, FLAB proved to be the best performing method for segmentation of the PV on repeat FLT PET/CT scans during (chemo)radiotherapy. This may potentially facilitate radiation dose adaptation to changing PV.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>24346414</pmid><doi>10.1007/s00259-013-2651-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1619-7070
ispartof European journal of nuclear medicine and molecular imaging, 2014-05, Vol.41 (5), p.915-924
issn 1619-7070
1619-7089
language eng
recordid cdi_proquest_miscellaneous_1520386386
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adult
Aged
Carcinoma, Squamous Cell - diagnostic imaging
Carcinoma, Squamous Cell - pathology
Cardiology
Clinical outcomes
Dideoxynucleosides
Drug therapy
Female
Head & neck cancer
Head and Neck Neoplasms - diagnostic imaging
Head and Neck Neoplasms - pathology
Humans
Image Processing, Computer-Assisted - methods
Imaging
Male
Medicine
Medicine & Public Health
Middle Aged
Multimodal Imaging
Nuclear Medicine
Oncology
Original Article
Orthopedics
Positron-Emission Tomography
Prognosis
Radiology
Radiopharmaceuticals
Tomography, X-Ray Computed
Tumor Burden
Tumors
title Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiautomatic%20methods%20for%20segmentation%20of%20the%20proliferative%20tumour%20volume%20on%20sequential%20FLT%20PET/CT%20images%20in%20head%20and%20neck%20carcinomas%20and%20their%20relation%20to%20clinical%20outcome&rft.jtitle=European%20journal%20of%20nuclear%20medicine%20and%20molecular%20imaging&rft.au=Arens,%20Anne%20I.%20J.&rft.date=2014-05-01&rft.volume=41&rft.issue=5&rft.spage=915&rft.epage=924&rft.pages=915-924&rft.issn=1619-7070&rft.eissn=1619-7089&rft_id=info:doi/10.1007/s00259-013-2651-0&rft_dat=%3Cproquest_cross%3E3268407921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513296594&rft_id=info:pmid/24346414&rfr_iscdi=true