Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm

In this paper, we propose a decision tree algorithm to characterize spatial extent and spectral features of invasive plant species (i.e., guava, Madagascar cardamom, and Molucca raspberry) in tropical rainforests by integrating datasets from passive and active remote sensing sensors. The decision tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS journal of photogrammetry and remote sensing 2014-02, Vol.88, p.174-192
Hauptverfasser: Ghulam, Abduwasit, Porton, Ingrid, Freeman, Karen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue
container_start_page 174
container_title ISPRS journal of photogrammetry and remote sensing
container_volume 88
creator Ghulam, Abduwasit
Porton, Ingrid
Freeman, Karen
description In this paper, we propose a decision tree algorithm to characterize spatial extent and spectral features of invasive plant species (i.e., guava, Madagascar cardamom, and Molucca raspberry) in tropical rainforests by integrating datasets from passive and active remote sensing sensors. The decision tree algorithm is based on a number of input variables including matching score and infeasibility images from Mixture Tuned Matched Filtering (MTMF), land-cover maps, tree height information derived from high resolution stereo imagery, polarimetric feature images, Radar Forest Degradation Index (RFDI), polarimetric and InSAR coherence and phase difference images. Spatial distributions of the study organisms are mapped using pixel-based Winner-Takes-All (WTA) algorithm, object oriented feature extraction, spectral unmixing, and compared with the newly developed decision tree approach. Our results show that the InSAR phase difference and PolInSAR HH–VV coherence images of L-band PALSAR data are the most important variables following the MTMF outputs in mapping subcanopy invasive plant species in tropical rainforest. We also show that the three types of invasive plants alone occupy about 17.6% of the Betampona Nature Reserve (BNR) while mixed forest, shrubland and grassland areas are summed to 11.9% of the reserve. This work presents the first systematic attempt to evaluate forest degradation, habitat quality and invasive plant statistics in the BNR, and provides significant insights as to management strategies for the control of invasive plants and conversation in the reserve.
doi_str_mv 10.1016/j.isprsjprs.2013.12.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520385812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924271613003018</els_id><sourcerecordid>1520385812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-f62a7b938c515792be5737cae681260bed1460cb3bced15bbe5bddb9d38471913</originalsourceid><addsrcrecordid>eNqFUctu3CAUtapW6jTpN5RNpVSqHcBjg5ej9JFIkVol7RoBvp4yssEFZqL8Ur6y1zNRtl0gEJwH556i-MBoxShrL3eVS3NMO1wVp6yuGK8oFa-KFZOCl5LXzetiRTu-Lrlg7dviXUo7SilrWrkqnr5ABpud35K0N1b7MD8S5w86uQOQedQ-kzSDdZDwmuQYZmf1SKJ2fggRUiZmIWTYRn2UCXM-IrTvyeRsDA8alS5u_P3m7vJnGI-HTyTCFDKQBD4trF5n_fnI0aRHu-TC4gZA9LgN0eU_03nxZtBjgvfP-1nx-9vXX1fX5e2P7zdXm9vS1kLmcmi5FqarpW1YIzpuoBG1sBpayXhLDfRs3VJramPx2Bh8N31vur6Wa8E6Vp8VFyfdOYa_e0yoJpcsjDgLCPukWMNpLRtUQ6g4QTFmShEGNUc36fioGFVLO2qnXtpRSzuKcYXtIPPjs4lOOK0hao-hX-hccsallIjbnHCAiQ8OokrYhcevu4i9qT64_3r9Az_crlU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520385812</pqid></control><display><type>article</type><title>Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ghulam, Abduwasit ; Porton, Ingrid ; Freeman, Karen</creator><creatorcontrib>Ghulam, Abduwasit ; Porton, Ingrid ; Freeman, Karen</creatorcontrib><description>In this paper, we propose a decision tree algorithm to characterize spatial extent and spectral features of invasive plant species (i.e., guava, Madagascar cardamom, and Molucca raspberry) in tropical rainforests by integrating datasets from passive and active remote sensing sensors. The decision tree algorithm is based on a number of input variables including matching score and infeasibility images from Mixture Tuned Matched Filtering (MTMF), land-cover maps, tree height information derived from high resolution stereo imagery, polarimetric feature images, Radar Forest Degradation Index (RFDI), polarimetric and InSAR coherence and phase difference images. Spatial distributions of the study organisms are mapped using pixel-based Winner-Takes-All (WTA) algorithm, object oriented feature extraction, spectral unmixing, and compared with the newly developed decision tree approach. Our results show that the InSAR phase difference and PolInSAR HH–VV coherence images of L-band PALSAR data are the most important variables following the MTMF outputs in mapping subcanopy invasive plant species in tropical rainforest. We also show that the three types of invasive plants alone occupy about 17.6% of the Betampona Nature Reserve (BNR) while mixed forest, shrubland and grassland areas are summed to 11.9% of the reserve. This work presents the first systematic attempt to evaluate forest degradation, habitat quality and invasive plant statistics in the BNR, and provides significant insights as to management strategies for the control of invasive plants and conversation in the reserve.</description><identifier>ISSN: 0924-2716</identifier><identifier>EISSN: 1872-8235</identifier><identifier>DOI: 10.1016/j.isprsjprs.2013.12.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Animal, plant and microbial ecology ; Applied geophysics ; Betampona Nature Reserve ; Biological and medical sciences ; Decision trees ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Forests ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Guava ; Interferometric synthetic aperture radar ; Internal geophysics ; Invasive plants ; Madagascar cardamom ; Molucca raspberry ; Phase shift ; Rain forests ; Remote sensing ; Reserves ; Teledetection and vegetation maps</subject><ispartof>ISPRS journal of photogrammetry and remote sensing, 2014-02, Vol.88, p.174-192</ispartof><rights>2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-f62a7b938c515792be5737cae681260bed1460cb3bced15bbe5bddb9d38471913</citedby><cites>FETCH-LOGICAL-c378t-f62a7b938c515792be5737cae681260bed1460cb3bced15bbe5bddb9d38471913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isprsjprs.2013.12.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28212888$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghulam, Abduwasit</creatorcontrib><creatorcontrib>Porton, Ingrid</creatorcontrib><creatorcontrib>Freeman, Karen</creatorcontrib><title>Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm</title><title>ISPRS journal of photogrammetry and remote sensing</title><description>In this paper, we propose a decision tree algorithm to characterize spatial extent and spectral features of invasive plant species (i.e., guava, Madagascar cardamom, and Molucca raspberry) in tropical rainforests by integrating datasets from passive and active remote sensing sensors. The decision tree algorithm is based on a number of input variables including matching score and infeasibility images from Mixture Tuned Matched Filtering (MTMF), land-cover maps, tree height information derived from high resolution stereo imagery, polarimetric feature images, Radar Forest Degradation Index (RFDI), polarimetric and InSAR coherence and phase difference images. Spatial distributions of the study organisms are mapped using pixel-based Winner-Takes-All (WTA) algorithm, object oriented feature extraction, spectral unmixing, and compared with the newly developed decision tree approach. Our results show that the InSAR phase difference and PolInSAR HH–VV coherence images of L-band PALSAR data are the most important variables following the MTMF outputs in mapping subcanopy invasive plant species in tropical rainforest. We also show that the three types of invasive plants alone occupy about 17.6% of the Betampona Nature Reserve (BNR) while mixed forest, shrubland and grassland areas are summed to 11.9% of the reserve. This work presents the first systematic attempt to evaluate forest degradation, habitat quality and invasive plant statistics in the BNR, and provides significant insights as to management strategies for the control of invasive plants and conversation in the reserve.</description><subject>Algorithms</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Betampona Nature Reserve</subject><subject>Biological and medical sciences</subject><subject>Decision trees</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Forests</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Guava</subject><subject>Interferometric synthetic aperture radar</subject><subject>Internal geophysics</subject><subject>Invasive plants</subject><subject>Madagascar cardamom</subject><subject>Molucca raspberry</subject><subject>Phase shift</subject><subject>Rain forests</subject><subject>Remote sensing</subject><subject>Reserves</subject><subject>Teledetection and vegetation maps</subject><issn>0924-2716</issn><issn>1872-8235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUctu3CAUtapW6jTpN5RNpVSqHcBjg5ej9JFIkVol7RoBvp4yssEFZqL8Ur6y1zNRtl0gEJwH556i-MBoxShrL3eVS3NMO1wVp6yuGK8oFa-KFZOCl5LXzetiRTu-Lrlg7dviXUo7SilrWrkqnr5ABpud35K0N1b7MD8S5w86uQOQedQ-kzSDdZDwmuQYZmf1SKJ2fggRUiZmIWTYRn2UCXM-IrTvyeRsDA8alS5u_P3m7vJnGI-HTyTCFDKQBD4trF5n_fnI0aRHu-TC4gZA9LgN0eU_03nxZtBjgvfP-1nx-9vXX1fX5e2P7zdXm9vS1kLmcmi5FqarpW1YIzpuoBG1sBpayXhLDfRs3VJramPx2Bh8N31vur6Wa8E6Vp8VFyfdOYa_e0yoJpcsjDgLCPukWMNpLRtUQ6g4QTFmShEGNUc36fioGFVLO2qnXtpRSzuKcYXtIPPjs4lOOK0hao-hX-hccsallIjbnHCAiQ8OokrYhcevu4i9qT64_3r9Az_crlU</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Ghulam, Abduwasit</creator><creator>Porton, Ingrid</creator><creator>Freeman, Karen</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140201</creationdate><title>Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm</title><author>Ghulam, Abduwasit ; Porton, Ingrid ; Freeman, Karen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-f62a7b938c515792be5737cae681260bed1460cb3bced15bbe5bddb9d38471913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Betampona Nature Reserve</topic><topic>Biological and medical sciences</topic><topic>Decision trees</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Forests</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Guava</topic><topic>Interferometric synthetic aperture radar</topic><topic>Internal geophysics</topic><topic>Invasive plants</topic><topic>Madagascar cardamom</topic><topic>Molucca raspberry</topic><topic>Phase shift</topic><topic>Rain forests</topic><topic>Remote sensing</topic><topic>Reserves</topic><topic>Teledetection and vegetation maps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghulam, Abduwasit</creatorcontrib><creatorcontrib>Porton, Ingrid</creatorcontrib><creatorcontrib>Freeman, Karen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ISPRS journal of photogrammetry and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghulam, Abduwasit</au><au>Porton, Ingrid</au><au>Freeman, Karen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm</atitle><jtitle>ISPRS journal of photogrammetry and remote sensing</jtitle><date>2014-02-01</date><risdate>2014</risdate><volume>88</volume><spage>174</spage><epage>192</epage><pages>174-192</pages><issn>0924-2716</issn><eissn>1872-8235</eissn><abstract>In this paper, we propose a decision tree algorithm to characterize spatial extent and spectral features of invasive plant species (i.e., guava, Madagascar cardamom, and Molucca raspberry) in tropical rainforests by integrating datasets from passive and active remote sensing sensors. The decision tree algorithm is based on a number of input variables including matching score and infeasibility images from Mixture Tuned Matched Filtering (MTMF), land-cover maps, tree height information derived from high resolution stereo imagery, polarimetric feature images, Radar Forest Degradation Index (RFDI), polarimetric and InSAR coherence and phase difference images. Spatial distributions of the study organisms are mapped using pixel-based Winner-Takes-All (WTA) algorithm, object oriented feature extraction, spectral unmixing, and compared with the newly developed decision tree approach. Our results show that the InSAR phase difference and PolInSAR HH–VV coherence images of L-band PALSAR data are the most important variables following the MTMF outputs in mapping subcanopy invasive plant species in tropical rainforest. We also show that the three types of invasive plants alone occupy about 17.6% of the Betampona Nature Reserve (BNR) while mixed forest, shrubland and grassland areas are summed to 11.9% of the reserve. This work presents the first systematic attempt to evaluate forest degradation, habitat quality and invasive plant statistics in the BNR, and provides significant insights as to management strategies for the control of invasive plants and conversation in the reserve.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.isprsjprs.2013.12.007</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-2716
ispartof ISPRS journal of photogrammetry and remote sensing, 2014-02, Vol.88, p.174-192
issn 0924-2716
1872-8235
language eng
recordid cdi_proquest_miscellaneous_1520385812
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Animal, plant and microbial ecology
Applied geophysics
Betampona Nature Reserve
Biological and medical sciences
Decision trees
Earth sciences
Earth, ocean, space
Exact sciences and technology
Forests
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Guava
Interferometric synthetic aperture radar
Internal geophysics
Invasive plants
Madagascar cardamom
Molucca raspberry
Phase shift
Rain forests
Remote sensing
Reserves
Teledetection and vegetation maps
title Detecting subcanopy invasive plant species in tropical rainforest by integrating optical and microwave (InSAR/PolInSAR) remote sensing data, and a decision tree algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20subcanopy%20invasive%20plant%20species%20in%20tropical%20rainforest%20by%20integrating%20optical%20and%20microwave%20(InSAR/PolInSAR)%20remote%20sensing%20data,%20and%20a%20decision%20tree%20algorithm&rft.jtitle=ISPRS%20journal%20of%20photogrammetry%20and%20remote%20sensing&rft.au=Ghulam,%20Abduwasit&rft.date=2014-02-01&rft.volume=88&rft.spage=174&rft.epage=192&rft.pages=174-192&rft.issn=0924-2716&rft.eissn=1872-8235&rft_id=info:doi/10.1016/j.isprsjprs.2013.12.007&rft_dat=%3Cproquest_cross%3E1520385812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520385812&rft_id=info:pmid/&rft_els_id=S0924271613003018&rfr_iscdi=true