Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability

This study aimed to improve the thermostability of alkaline α-amylase from Alkalimonas amylolytica through structure-based rational design and systems engineering of its catalytic domain. Separate engineering strategies were used to increase alkaline α-amylase thermostability: (1) replace histidine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2014-05, Vol.98 (9), p.3997-4007
Hauptverfasser: Deng, Zhuangmei, Yang, Haiquan, Li, Jianghua, Shin, Hyun-dong, Du, Guocheng, Liu, Long, Chen, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4007
container_issue 9
container_start_page 3997
container_title Applied microbiology and biotechnology
container_volume 98
creator Deng, Zhuangmei
Yang, Haiquan
Li, Jianghua
Shin, Hyun-dong
Du, Guocheng
Liu, Long
Chen, Jian
description This study aimed to improve the thermostability of alkaline α-amylase from Alkalimonas amylolytica through structure-based rational design and systems engineering of its catalytic domain. Separate engineering strategies were used to increase alkaline α-amylase thermostability: (1) replace histidine residues with leucine to stabilize the least similar region in domain B, (2) change residues (glycine, proline, and glutamine) to stabilize the highly conserved α-helices in domain A, and (3) decrease the free energy of folding predicted by the PoPMuSiC program to stabilize the overall protein structure. A total of 15 single-site mutants were obtained, and four mutants — H209L, Q226V, N302W, and P477V — showed enhanced thermostability. Combinational mutations were subsequently introduced, and the best mutant was triple mutant H209L/Q226V/P477V. Its half-life at 60 °C was 3.8-fold of that of the wild type and displayed a 3.2 °C increase in melting temperature compared with that of the wild type. Interestingly, other biochemical properties of this mutant also improved: the optimum temperature increased from 50 °C to 55 °C, the optimum pH shifted from 9.5 to 10.0, the stable pH range expanded from 7.0–11.0 to 6.0–12.0, the specific activity increased by 24 %, and the catalytic efficiency (k cₐₜ/K ₘ) increased from 1.8×10⁴ to 3.5 × 10⁴ l/(g min). Finally, the mechanisms responsible for the increased thermostability were analyzed through comparative analysis of structure models. The structure-based rational design and systems engineering strategies in this study may also improve the thermostability of other industrial enzymes.
doi_str_mv 10.1007/s00253-013-5375-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520382319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A370443964</galeid><sourcerecordid>A370443964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-6993b8049cb5369f6e40f9486ef59d76f08bfbab6c84e7aef1621f16c842cdd83</originalsourceid><addsrcrecordid>eNqNkt-K1DAUxoMo7rj6AN5owRu96Jp_TZvLYfHPwoLguNchTU9ms7bNmKRiH8sX8ZlM7SgMiEgg4Xz5fYeE8yH0lOALgnH9OmJMK1ZiwsqK1VU530MbwhktsSD8PtpgksW6ks0ZehTjHcaENkI8RGeUU15LSTdo3qUwmTQFKFsdoStg3LsRILhxX3hb6P6z7rNQ_Phe6mHuM1PY4IfjxeHW9c4U21_F4Ecdi4Xy_Zyc0YX1oXDDIfivuXO6hTD4mHSbPWl-jB5Y3Ud4cjzP0c3bN58u35fXH95dXW6vS1NhmkohJWsbzKVpKyakFcCxlbwRYCvZ1cLiprWtboVpONQaLBGU5C2X1HRdw87Ry7VvfsaXCWJSg4sG-l6P4KeoSEUxaygj8j9QImoqGa8y-mJF97oH5UbrU9BmwdWW1ZhzJgXP1MVfqLw6GJzxI1iX9RPDqxNDZhJ8S3s9xaiudh9PWbKyJvgYA1h1CG7QYVYEqyUfas2HyvlQSz7UnD3Pjj-c2gG6P47fgcgAXYF4WCIAQd35KYx5QP_s-nw1We2V3gcX1c2OYsIxxqLJY2M_AUYu0D0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516729345</pqid></control><display><type>article</type><title>Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Deng, Zhuangmei ; Yang, Haiquan ; Li, Jianghua ; Shin, Hyun-dong ; Du, Guocheng ; Liu, Long ; Chen, Jian</creator><creatorcontrib>Deng, Zhuangmei ; Yang, Haiquan ; Li, Jianghua ; Shin, Hyun-dong ; Du, Guocheng ; Liu, Long ; Chen, Jian</creatorcontrib><description>This study aimed to improve the thermostability of alkaline α-amylase from Alkalimonas amylolytica through structure-based rational design and systems engineering of its catalytic domain. Separate engineering strategies were used to increase alkaline α-amylase thermostability: (1) replace histidine residues with leucine to stabilize the least similar region in domain B, (2) change residues (glycine, proline, and glutamine) to stabilize the highly conserved α-helices in domain A, and (3) decrease the free energy of folding predicted by the PoPMuSiC program to stabilize the overall protein structure. A total of 15 single-site mutants were obtained, and four mutants — H209L, Q226V, N302W, and P477V — showed enhanced thermostability. Combinational mutations were subsequently introduced, and the best mutant was triple mutant H209L/Q226V/P477V. Its half-life at 60 °C was 3.8-fold of that of the wild type and displayed a 3.2 °C increase in melting temperature compared with that of the wild type. Interestingly, other biochemical properties of this mutant also improved: the optimum temperature increased from 50 °C to 55 °C, the optimum pH shifted from 9.5 to 10.0, the stable pH range expanded from 7.0–11.0 to 6.0–12.0, the specific activity increased by 24 %, and the catalytic efficiency (k cₐₜ/K ₘ) increased from 1.8×10⁴ to 3.5 × 10⁴ l/(g min). Finally, the mechanisms responsible for the increased thermostability were analyzed through comparative analysis of structure models. The structure-based rational design and systems engineering strategies in this study may also improve the thermostability of other industrial enzymes.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-013-5375-y</identifier><identifier>PMID: 24247992</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>active sites ; alpha-amylase ; alpha-Amylases - chemistry ; alpha-Amylases - genetics ; alpha-Amylases - metabolism ; Amino Acid Substitution ; Amylases ; Analysis ; Biomedical and Life Sciences ; Biotechnologically Relevant Enzymes and Proteins ; Biotechnology ; DNA Mutational Analysis ; energy ; engineering ; Enzyme Stability ; Gammaproteobacteria - enzymology ; Gammaproteobacteria - genetics ; half life ; histidine ; Hydrogen-Ion Concentration ; Kinetics ; Life Sciences ; melting point ; Microbial Genetics and Genomics ; Microbiology ; Mutant Proteins - chemistry ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; mutants ; mutation ; proline ; Properties ; Protein Engineering ; protein structure ; Proteins ; Proteobacteria ; Structure ; Temperature ; thermal stability</subject><ispartof>Applied microbiology and biotechnology, 2014-05, Vol.98 (9), p.3997-4007</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-6993b8049cb5369f6e40f9486ef59d76f08bfbab6c84e7aef1621f16c842cdd83</citedby><cites>FETCH-LOGICAL-c502t-6993b8049cb5369f6e40f9486ef59d76f08bfbab6c84e7aef1621f16c842cdd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-013-5375-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-013-5375-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24247992$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Zhuangmei</creatorcontrib><creatorcontrib>Yang, Haiquan</creatorcontrib><creatorcontrib>Li, Jianghua</creatorcontrib><creatorcontrib>Shin, Hyun-dong</creatorcontrib><creatorcontrib>Du, Guocheng</creatorcontrib><creatorcontrib>Liu, Long</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><title>Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>This study aimed to improve the thermostability of alkaline α-amylase from Alkalimonas amylolytica through structure-based rational design and systems engineering of its catalytic domain. Separate engineering strategies were used to increase alkaline α-amylase thermostability: (1) replace histidine residues with leucine to stabilize the least similar region in domain B, (2) change residues (glycine, proline, and glutamine) to stabilize the highly conserved α-helices in domain A, and (3) decrease the free energy of folding predicted by the PoPMuSiC program to stabilize the overall protein structure. A total of 15 single-site mutants were obtained, and four mutants — H209L, Q226V, N302W, and P477V — showed enhanced thermostability. Combinational mutations were subsequently introduced, and the best mutant was triple mutant H209L/Q226V/P477V. Its half-life at 60 °C was 3.8-fold of that of the wild type and displayed a 3.2 °C increase in melting temperature compared with that of the wild type. Interestingly, other biochemical properties of this mutant also improved: the optimum temperature increased from 50 °C to 55 °C, the optimum pH shifted from 9.5 to 10.0, the stable pH range expanded from 7.0–11.0 to 6.0–12.0, the specific activity increased by 24 %, and the catalytic efficiency (k cₐₜ/K ₘ) increased from 1.8×10⁴ to 3.5 × 10⁴ l/(g min). Finally, the mechanisms responsible for the increased thermostability were analyzed through comparative analysis of structure models. The structure-based rational design and systems engineering strategies in this study may also improve the thermostability of other industrial enzymes.</description><subject>active sites</subject><subject>alpha-amylase</subject><subject>alpha-Amylases - chemistry</subject><subject>alpha-Amylases - genetics</subject><subject>alpha-Amylases - metabolism</subject><subject>Amino Acid Substitution</subject><subject>Amylases</subject><subject>Analysis</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnologically Relevant Enzymes and Proteins</subject><subject>Biotechnology</subject><subject>DNA Mutational Analysis</subject><subject>energy</subject><subject>engineering</subject><subject>Enzyme Stability</subject><subject>Gammaproteobacteria - enzymology</subject><subject>Gammaproteobacteria - genetics</subject><subject>half life</subject><subject>histidine</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>melting point</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>mutants</subject><subject>mutation</subject><subject>proline</subject><subject>Properties</subject><subject>Protein Engineering</subject><subject>protein structure</subject><subject>Proteins</subject><subject>Proteobacteria</subject><subject>Structure</subject><subject>Temperature</subject><subject>thermal stability</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkt-K1DAUxoMo7rj6AN5owRu96Jp_TZvLYfHPwoLguNchTU9ms7bNmKRiH8sX8ZlM7SgMiEgg4Xz5fYeE8yH0lOALgnH9OmJMK1ZiwsqK1VU530MbwhktsSD8PtpgksW6ks0ZehTjHcaENkI8RGeUU15LSTdo3qUwmTQFKFsdoStg3LsRILhxX3hb6P6z7rNQ_Phe6mHuM1PY4IfjxeHW9c4U21_F4Ecdi4Xy_Zyc0YX1oXDDIfivuXO6hTD4mHSbPWl-jB5Y3Ud4cjzP0c3bN58u35fXH95dXW6vS1NhmkohJWsbzKVpKyakFcCxlbwRYCvZ1cLiprWtboVpONQaLBGU5C2X1HRdw87Ry7VvfsaXCWJSg4sG-l6P4KeoSEUxaygj8j9QImoqGa8y-mJF97oH5UbrU9BmwdWW1ZhzJgXP1MVfqLw6GJzxI1iX9RPDqxNDZhJ8S3s9xaiudh9PWbKyJvgYA1h1CG7QYVYEqyUfas2HyvlQSz7UnD3Pjj-c2gG6P47fgcgAXYF4WCIAQd35KYx5QP_s-nw1We2V3gcX1c2OYsIxxqLJY2M_AUYu0D0</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Deng, Zhuangmei</creator><creator>Yang, Haiquan</creator><creator>Li, Jianghua</creator><creator>Shin, Hyun-dong</creator><creator>Du, Guocheng</creator><creator>Liu, Long</creator><creator>Chen, Jian</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7X8</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140501</creationdate><title>Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability</title><author>Deng, Zhuangmei ; Yang, Haiquan ; Li, Jianghua ; Shin, Hyun-dong ; Du, Guocheng ; Liu, Long ; Chen, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-6993b8049cb5369f6e40f9486ef59d76f08bfbab6c84e7aef1621f16c842cdd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>active sites</topic><topic>alpha-amylase</topic><topic>alpha-Amylases - chemistry</topic><topic>alpha-Amylases - genetics</topic><topic>alpha-Amylases - metabolism</topic><topic>Amino Acid Substitution</topic><topic>Amylases</topic><topic>Analysis</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnologically Relevant Enzymes and Proteins</topic><topic>Biotechnology</topic><topic>DNA Mutational Analysis</topic><topic>energy</topic><topic>engineering</topic><topic>Enzyme Stability</topic><topic>Gammaproteobacteria - enzymology</topic><topic>Gammaproteobacteria - genetics</topic><topic>half life</topic><topic>histidine</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>melting point</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>mutants</topic><topic>mutation</topic><topic>proline</topic><topic>Properties</topic><topic>Protein Engineering</topic><topic>protein structure</topic><topic>Proteins</topic><topic>Proteobacteria</topic><topic>Structure</topic><topic>Temperature</topic><topic>thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Zhuangmei</creatorcontrib><creatorcontrib>Yang, Haiquan</creatorcontrib><creatorcontrib>Li, Jianghua</creatorcontrib><creatorcontrib>Shin, Hyun-dong</creatorcontrib><creatorcontrib>Du, Guocheng</creatorcontrib><creatorcontrib>Liu, Long</creatorcontrib><creatorcontrib>Chen, Jian</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Zhuangmei</au><au>Yang, Haiquan</au><au>Li, Jianghua</au><au>Shin, Hyun-dong</au><au>Du, Guocheng</au><au>Liu, Long</au><au>Chen, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>98</volume><issue>9</issue><spage>3997</spage><epage>4007</epage><pages>3997-4007</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>This study aimed to improve the thermostability of alkaline α-amylase from Alkalimonas amylolytica through structure-based rational design and systems engineering of its catalytic domain. Separate engineering strategies were used to increase alkaline α-amylase thermostability: (1) replace histidine residues with leucine to stabilize the least similar region in domain B, (2) change residues (glycine, proline, and glutamine) to stabilize the highly conserved α-helices in domain A, and (3) decrease the free energy of folding predicted by the PoPMuSiC program to stabilize the overall protein structure. A total of 15 single-site mutants were obtained, and four mutants — H209L, Q226V, N302W, and P477V — showed enhanced thermostability. Combinational mutations were subsequently introduced, and the best mutant was triple mutant H209L/Q226V/P477V. Its half-life at 60 °C was 3.8-fold of that of the wild type and displayed a 3.2 °C increase in melting temperature compared with that of the wild type. Interestingly, other biochemical properties of this mutant also improved: the optimum temperature increased from 50 °C to 55 °C, the optimum pH shifted from 9.5 to 10.0, the stable pH range expanded from 7.0–11.0 to 6.0–12.0, the specific activity increased by 24 %, and the catalytic efficiency (k cₐₜ/K ₘ) increased from 1.8×10⁴ to 3.5 × 10⁴ l/(g min). Finally, the mechanisms responsible for the increased thermostability were analyzed through comparative analysis of structure models. The structure-based rational design and systems engineering strategies in this study may also improve the thermostability of other industrial enzymes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>24247992</pmid><doi>10.1007/s00253-013-5375-y</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2014-05, Vol.98 (9), p.3997-4007
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1520382319
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects active sites
alpha-amylase
alpha-Amylases - chemistry
alpha-Amylases - genetics
alpha-Amylases - metabolism
Amino Acid Substitution
Amylases
Analysis
Biomedical and Life Sciences
Biotechnologically Relevant Enzymes and Proteins
Biotechnology
DNA Mutational Analysis
energy
engineering
Enzyme Stability
Gammaproteobacteria - enzymology
Gammaproteobacteria - genetics
half life
histidine
Hydrogen-Ion Concentration
Kinetics
Life Sciences
melting point
Microbial Genetics and Genomics
Microbiology
Mutant Proteins - chemistry
Mutant Proteins - genetics
Mutant Proteins - metabolism
mutants
mutation
proline
Properties
Protein Engineering
protein structure
Proteins
Proteobacteria
Structure
Temperature
thermal stability
title Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A03%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-based%20engineering%20of%20alkaline%20%CE%B1-amylase%20from%20alkaliphilic%20Alkalimonas%20amylolytica%20for%20improved%20thermostability&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Deng,%20Zhuangmei&rft.date=2014-05-01&rft.volume=98&rft.issue=9&rft.spage=3997&rft.epage=4007&rft.pages=3997-4007&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-013-5375-y&rft_dat=%3Cgale_proqu%3EA370443964%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1516729345&rft_id=info:pmid/24247992&rft_galeid=A370443964&rfr_iscdi=true