PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography
This paper reports the body distribution of block copolymers (made by controlled radical polymerization) with N-(2-hydroxypropyl)methacrylamide (HPMA) as hydrophilic block and lauryl methacrylate (LMA) as hydrophobic block. They form micellar aggregates in aqueous solution. For this study the hydrop...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2013-11, Vol.172 (1), p.77-85 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 1 |
container_start_page | 77 |
container_title | Journal of controlled release |
container_volume | 172 |
creator | Allmeroth, Mareli Moderegger, Dorothea Gündel, Daniel Buchholz, Hans-Georg Mohr, Nicole Koynov, Kaloian Rösch, Frank Thews, Oliver Zentel, Rudolf |
description | This paper reports the body distribution of block copolymers (made by controlled radical polymerization) with N-(2-hydroxypropyl)methacrylamide (HPMA) as hydrophilic block and lauryl methacrylate (LMA) as hydrophobic block. They form micellar aggregates in aqueous solution. For this study the hydrophilic/hydrophobic balance was varied by incorporation of differing amounts of poly(ethylene glycol) (PEG) side chains into the hydrophilic block, while keeping the degree of polymerization of both blocks constant. PEGylation reduced the size of the micellar aggregates (Rh=113 to 38nm) and led to a minimum size of 7% PEG side chains. Polymers were labeled with the positron emitter 18F, which enables to monitor their biodistribution pattern for up to 4h with high spatial resolution. These block copolymers were investigated in Sprague–Dawley rats bearing the Walker 256 mammary carcinoma in vivo. Organ/tumor uptake was quantified by ex vivo biodistribution as well as small animal positron emission tomography (PET).
All polymers showed renal clearance with time. Their uptake in liver and spleen decreased with size of the aggregates. This made PEGylated polymers – which form smaller aggregates – attractive as they show a higher blood pool concentration. Within the studied polymers, the block copolymer of 7% PEGylation exhibited the most favorable organ distribution pattern, showing highest blood-circulation level as well as lowest hepatic and splenic uptake. Most remarkably, the in vivo results revealed a continuous increase in tumor accumulation with PEGylation (independent of the blood pool concentration) — starting from lowest tumor uptake for the pure block copolymer to highest enrichment with 11% PEG side chains. These findings emphasize the need for reliable (non-invasive) in vivo techniques revealing overall polymer distribution and helping to identify drug carrier systems for efficient therapy.
[Display omitted] |
doi_str_mv | 10.1016/j.jconrel.2013.07.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520381877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168365913004379</els_id><sourcerecordid>1459559568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-82f71617830e4191cbbf02aa95a3ccc7f41ab911c8d57bd76965f6e2f5a7ce693</originalsourceid><addsrcrecordid>eNqFkcFq3DAQhk1pabZpH6GtjrnYkSzLknopS0iTQEoDbc5ClscbbW3LkeQFv0kftzK77TUgEBLfPzPMl2UfCS4IJvXlvtgbN3roixITWmBe4JK_yjZEcJpXUrLX2SZxIqc1k2fZuxD2GGNGK_42OyupZFVN8Sb783B9s_Q6Wjci16Hbh-_bvNEBWtT0zvxGxk2uXwbwAcH4pEcDAcV5cB5pY-ZhPkXtiA724L6gLXqe9RhtTP8HQCHO7YLmYMcd8rq1rtcN9OtLjy2aXLDRpzgMNoS1TnSD23k9PS3vszed7gN8ON3n2eO3619Xt_n9j5u7q-19biohYi7KjpOacEExVEQS0zQdLrWWTFNjDO8qohtJiBEt403La1mzroayY5obqCU9zy6OdSfvnmcIUaVZDPS9HsHNQRFWYirSVvnLaMUkS6cWCWVH1HgXgodOTd4O2i-KYLX6U3t18qdWfwpzlfyl3KdTi7kZoP2f-icsAZ-PQKed0jtvg3r8mSowjAnnpVhbfz0SkLZ2sOBVMBaSuNZ6MFG1zr4wxF-KS7ti</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459559568</pqid></control><display><type>article</type><title>PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Allmeroth, Mareli ; Moderegger, Dorothea ; Gündel, Daniel ; Buchholz, Hans-Georg ; Mohr, Nicole ; Koynov, Kaloian ; Rösch, Frank ; Thews, Oliver ; Zentel, Rudolf</creator><creatorcontrib>Allmeroth, Mareli ; Moderegger, Dorothea ; Gündel, Daniel ; Buchholz, Hans-Georg ; Mohr, Nicole ; Koynov, Kaloian ; Rösch, Frank ; Thews, Oliver ; Zentel, Rudolf</creatorcontrib><description>This paper reports the body distribution of block copolymers (made by controlled radical polymerization) with N-(2-hydroxypropyl)methacrylamide (HPMA) as hydrophilic block and lauryl methacrylate (LMA) as hydrophobic block. They form micellar aggregates in aqueous solution. For this study the hydrophilic/hydrophobic balance was varied by incorporation of differing amounts of poly(ethylene glycol) (PEG) side chains into the hydrophilic block, while keeping the degree of polymerization of both blocks constant. PEGylation reduced the size of the micellar aggregates (Rh=113 to 38nm) and led to a minimum size of 7% PEG side chains. Polymers were labeled with the positron emitter 18F, which enables to monitor their biodistribution pattern for up to 4h with high spatial resolution. These block copolymers were investigated in Sprague–Dawley rats bearing the Walker 256 mammary carcinoma in vivo. Organ/tumor uptake was quantified by ex vivo biodistribution as well as small animal positron emission tomography (PET).
All polymers showed renal clearance with time. Their uptake in liver and spleen decreased with size of the aggregates. This made PEGylated polymers – which form smaller aggregates – attractive as they show a higher blood pool concentration. Within the studied polymers, the block copolymer of 7% PEGylation exhibited the most favorable organ distribution pattern, showing highest blood-circulation level as well as lowest hepatic and splenic uptake. Most remarkably, the in vivo results revealed a continuous increase in tumor accumulation with PEGylation (independent of the blood pool concentration) — starting from lowest tumor uptake for the pure block copolymer to highest enrichment with 11% PEG side chains. These findings emphasize the need for reliable (non-invasive) in vivo techniques revealing overall polymer distribution and helping to identify drug carrier systems for efficient therapy.
[Display omitted]</description><identifier>ISSN: 0168-3659</identifier><identifier>EISSN: 1873-4995</identifier><identifier>DOI: 10.1016/j.jconrel.2013.07.027</identifier><identifier>PMID: 23954630</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; aqueous solutions ; blood ; blood circulation ; carcinoma ; chemical bonding ; composite polymers ; drug carriers ; ethylene glycol ; Fluorine Radioisotopes - chemistry ; Fluorine Radioisotopes - pharmacokinetics ; Fluorine-18 labeling ; HPMA ; hydrophilicity ; hydrophobicity ; liver ; Male ; Mammary Neoplasms, Animal - diagnosis ; Mammary Neoplasms, Animal - diagnostic imaging ; Methacrylates - chemistry ; Methacrylates - pharmacokinetics ; Micelles ; PEG ; PET ; Polyethylene Glycols - chemistry ; Polyethylene Glycols - pharmacokinetics ; polymerization ; Positron-Emission Tomography ; radiolabeling ; Rats ; Rats, Sprague-Dawley ; renal clearance ; spleen ; Structure–property relationships ; Tissue Distribution ; Walker 256 mammary carcinoma</subject><ispartof>Journal of controlled release, 2013-11, Vol.172 (1), p.77-85</ispartof><rights>2013</rights><rights>2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-82f71617830e4191cbbf02aa95a3ccc7f41ab911c8d57bd76965f6e2f5a7ce693</citedby><cites>FETCH-LOGICAL-c488t-82f71617830e4191cbbf02aa95a3ccc7f41ab911c8d57bd76965f6e2f5a7ce693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jconrel.2013.07.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23954630$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Allmeroth, Mareli</creatorcontrib><creatorcontrib>Moderegger, Dorothea</creatorcontrib><creatorcontrib>Gündel, Daniel</creatorcontrib><creatorcontrib>Buchholz, Hans-Georg</creatorcontrib><creatorcontrib>Mohr, Nicole</creatorcontrib><creatorcontrib>Koynov, Kaloian</creatorcontrib><creatorcontrib>Rösch, Frank</creatorcontrib><creatorcontrib>Thews, Oliver</creatorcontrib><creatorcontrib>Zentel, Rudolf</creatorcontrib><title>PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography</title><title>Journal of controlled release</title><addtitle>J Control Release</addtitle><description>This paper reports the body distribution of block copolymers (made by controlled radical polymerization) with N-(2-hydroxypropyl)methacrylamide (HPMA) as hydrophilic block and lauryl methacrylate (LMA) as hydrophobic block. They form micellar aggregates in aqueous solution. For this study the hydrophilic/hydrophobic balance was varied by incorporation of differing amounts of poly(ethylene glycol) (PEG) side chains into the hydrophilic block, while keeping the degree of polymerization of both blocks constant. PEGylation reduced the size of the micellar aggregates (Rh=113 to 38nm) and led to a minimum size of 7% PEG side chains. Polymers were labeled with the positron emitter 18F, which enables to monitor their biodistribution pattern for up to 4h with high spatial resolution. These block copolymers were investigated in Sprague–Dawley rats bearing the Walker 256 mammary carcinoma in vivo. Organ/tumor uptake was quantified by ex vivo biodistribution as well as small animal positron emission tomography (PET).
All polymers showed renal clearance with time. Their uptake in liver and spleen decreased with size of the aggregates. This made PEGylated polymers – which form smaller aggregates – attractive as they show a higher blood pool concentration. Within the studied polymers, the block copolymer of 7% PEGylation exhibited the most favorable organ distribution pattern, showing highest blood-circulation level as well as lowest hepatic and splenic uptake. Most remarkably, the in vivo results revealed a continuous increase in tumor accumulation with PEGylation (independent of the blood pool concentration) — starting from lowest tumor uptake for the pure block copolymer to highest enrichment with 11% PEG side chains. These findings emphasize the need for reliable (non-invasive) in vivo techniques revealing overall polymer distribution and helping to identify drug carrier systems for efficient therapy.
[Display omitted]</description><subject>Animals</subject><subject>aqueous solutions</subject><subject>blood</subject><subject>blood circulation</subject><subject>carcinoma</subject><subject>chemical bonding</subject><subject>composite polymers</subject><subject>drug carriers</subject><subject>ethylene glycol</subject><subject>Fluorine Radioisotopes - chemistry</subject><subject>Fluorine Radioisotopes - pharmacokinetics</subject><subject>Fluorine-18 labeling</subject><subject>HPMA</subject><subject>hydrophilicity</subject><subject>hydrophobicity</subject><subject>liver</subject><subject>Male</subject><subject>Mammary Neoplasms, Animal - diagnosis</subject><subject>Mammary Neoplasms, Animal - diagnostic imaging</subject><subject>Methacrylates - chemistry</subject><subject>Methacrylates - pharmacokinetics</subject><subject>Micelles</subject><subject>PEG</subject><subject>PET</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyethylene Glycols - pharmacokinetics</subject><subject>polymerization</subject><subject>Positron-Emission Tomography</subject><subject>radiolabeling</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>renal clearance</subject><subject>spleen</subject><subject>Structure–property relationships</subject><subject>Tissue Distribution</subject><subject>Walker 256 mammary carcinoma</subject><issn>0168-3659</issn><issn>1873-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFq3DAQhk1pabZpH6GtjrnYkSzLknopS0iTQEoDbc5ClscbbW3LkeQFv0kftzK77TUgEBLfPzPMl2UfCS4IJvXlvtgbN3roixITWmBe4JK_yjZEcJpXUrLX2SZxIqc1k2fZuxD2GGNGK_42OyupZFVN8Sb783B9s_Q6Wjci16Hbh-_bvNEBWtT0zvxGxk2uXwbwAcH4pEcDAcV5cB5pY-ZhPkXtiA724L6gLXqe9RhtTP8HQCHO7YLmYMcd8rq1rtcN9OtLjy2aXLDRpzgMNoS1TnSD23k9PS3vszed7gN8ON3n2eO3619Xt_n9j5u7q-19biohYi7KjpOacEExVEQS0zQdLrWWTFNjDO8qohtJiBEt403La1mzroayY5obqCU9zy6OdSfvnmcIUaVZDPS9HsHNQRFWYirSVvnLaMUkS6cWCWVH1HgXgodOTd4O2i-KYLX6U3t18qdWfwpzlfyl3KdTi7kZoP2f-icsAZ-PQKed0jtvg3r8mSowjAnnpVhbfz0SkLZ2sOBVMBaSuNZ6MFG1zr4wxF-KS7ti</recordid><startdate>20131128</startdate><enddate>20131128</enddate><creator>Allmeroth, Mareli</creator><creator>Moderegger, Dorothea</creator><creator>Gündel, Daniel</creator><creator>Buchholz, Hans-Georg</creator><creator>Mohr, Nicole</creator><creator>Koynov, Kaloian</creator><creator>Rösch, Frank</creator><creator>Thews, Oliver</creator><creator>Zentel, Rudolf</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20131128</creationdate><title>PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography</title><author>Allmeroth, Mareli ; Moderegger, Dorothea ; Gündel, Daniel ; Buchholz, Hans-Georg ; Mohr, Nicole ; Koynov, Kaloian ; Rösch, Frank ; Thews, Oliver ; Zentel, Rudolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-82f71617830e4191cbbf02aa95a3ccc7f41ab911c8d57bd76965f6e2f5a7ce693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>aqueous solutions</topic><topic>blood</topic><topic>blood circulation</topic><topic>carcinoma</topic><topic>chemical bonding</topic><topic>composite polymers</topic><topic>drug carriers</topic><topic>ethylene glycol</topic><topic>Fluorine Radioisotopes - chemistry</topic><topic>Fluorine Radioisotopes - pharmacokinetics</topic><topic>Fluorine-18 labeling</topic><topic>HPMA</topic><topic>hydrophilicity</topic><topic>hydrophobicity</topic><topic>liver</topic><topic>Male</topic><topic>Mammary Neoplasms, Animal - diagnosis</topic><topic>Mammary Neoplasms, Animal - diagnostic imaging</topic><topic>Methacrylates - chemistry</topic><topic>Methacrylates - pharmacokinetics</topic><topic>Micelles</topic><topic>PEG</topic><topic>PET</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyethylene Glycols - pharmacokinetics</topic><topic>polymerization</topic><topic>Positron-Emission Tomography</topic><topic>radiolabeling</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>renal clearance</topic><topic>spleen</topic><topic>Structure–property relationships</topic><topic>Tissue Distribution</topic><topic>Walker 256 mammary carcinoma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allmeroth, Mareli</creatorcontrib><creatorcontrib>Moderegger, Dorothea</creatorcontrib><creatorcontrib>Gündel, Daniel</creatorcontrib><creatorcontrib>Buchholz, Hans-Georg</creatorcontrib><creatorcontrib>Mohr, Nicole</creatorcontrib><creatorcontrib>Koynov, Kaloian</creatorcontrib><creatorcontrib>Rösch, Frank</creatorcontrib><creatorcontrib>Thews, Oliver</creatorcontrib><creatorcontrib>Zentel, Rudolf</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of controlled release</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allmeroth, Mareli</au><au>Moderegger, Dorothea</au><au>Gündel, Daniel</au><au>Buchholz, Hans-Georg</au><au>Mohr, Nicole</au><au>Koynov, Kaloian</au><au>Rösch, Frank</au><au>Thews, Oliver</au><au>Zentel, Rudolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography</atitle><jtitle>Journal of controlled release</jtitle><addtitle>J Control Release</addtitle><date>2013-11-28</date><risdate>2013</risdate><volume>172</volume><issue>1</issue><spage>77</spage><epage>85</epage><pages>77-85</pages><issn>0168-3659</issn><eissn>1873-4995</eissn><abstract>This paper reports the body distribution of block copolymers (made by controlled radical polymerization) with N-(2-hydroxypropyl)methacrylamide (HPMA) as hydrophilic block and lauryl methacrylate (LMA) as hydrophobic block. They form micellar aggregates in aqueous solution. For this study the hydrophilic/hydrophobic balance was varied by incorporation of differing amounts of poly(ethylene glycol) (PEG) side chains into the hydrophilic block, while keeping the degree of polymerization of both blocks constant. PEGylation reduced the size of the micellar aggregates (Rh=113 to 38nm) and led to a minimum size of 7% PEG side chains. Polymers were labeled with the positron emitter 18F, which enables to monitor their biodistribution pattern for up to 4h with high spatial resolution. These block copolymers were investigated in Sprague–Dawley rats bearing the Walker 256 mammary carcinoma in vivo. Organ/tumor uptake was quantified by ex vivo biodistribution as well as small animal positron emission tomography (PET).
All polymers showed renal clearance with time. Their uptake in liver and spleen decreased with size of the aggregates. This made PEGylated polymers – which form smaller aggregates – attractive as they show a higher blood pool concentration. Within the studied polymers, the block copolymer of 7% PEGylation exhibited the most favorable organ distribution pattern, showing highest blood-circulation level as well as lowest hepatic and splenic uptake. Most remarkably, the in vivo results revealed a continuous increase in tumor accumulation with PEGylation (independent of the blood pool concentration) — starting from lowest tumor uptake for the pure block copolymer to highest enrichment with 11% PEG side chains. These findings emphasize the need for reliable (non-invasive) in vivo techniques revealing overall polymer distribution and helping to identify drug carrier systems for efficient therapy.
[Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>23954630</pmid><doi>10.1016/j.jconrel.2013.07.027</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-3659 |
ispartof | Journal of controlled release, 2013-11, Vol.172 (1), p.77-85 |
issn | 0168-3659 1873-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520381877 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals aqueous solutions blood blood circulation carcinoma chemical bonding composite polymers drug carriers ethylene glycol Fluorine Radioisotopes - chemistry Fluorine Radioisotopes - pharmacokinetics Fluorine-18 labeling HPMA hydrophilicity hydrophobicity liver Male Mammary Neoplasms, Animal - diagnosis Mammary Neoplasms, Animal - diagnostic imaging Methacrylates - chemistry Methacrylates - pharmacokinetics Micelles PEG PET Polyethylene Glycols - chemistry Polyethylene Glycols - pharmacokinetics polymerization Positron-Emission Tomography radiolabeling Rats Rats, Sprague-Dawley renal clearance spleen Structure–property relationships Tissue Distribution Walker 256 mammary carcinoma |
title | PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PEGylation%20of%20HPMA-based%20block%20copolymers%20enhances%20tumor%20accumulation%20in%20vivo:%20A%20quantitative%20study%20using%20radiolabeling%20and%20positron%20emission%20tomography&rft.jtitle=Journal%20of%20controlled%20release&rft.au=Allmeroth,%20Mareli&rft.date=2013-11-28&rft.volume=172&rft.issue=1&rft.spage=77&rft.epage=85&rft.pages=77-85&rft.issn=0168-3659&rft.eissn=1873-4995&rft_id=info:doi/10.1016/j.jconrel.2013.07.027&rft_dat=%3Cproquest_cross%3E1459559568%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459559568&rft_id=info:pmid/23954630&rft_els_id=S0168365913004379&rfr_iscdi=true |