Predicting dementia development in Parkinson's disease using Bayesian network classifiers

Abstract Parkinson's disease (PD) has broadly been associated with mild cognitive impairment (PDMCI) and dementia (PDD). Researchers have studied surrogate, neuroanatomic biomarkers provided by magnetic resonance imaging (MRI) that may help in the early diagnosis of this condition. In this arti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychiatry research. Neuroimaging 2013-08, Vol.213 (2), p.92-98
Hauptverfasser: Morales, Dinora A, Vives-Gilabert, Yolanda, Gómez-Ansón, Beatriz, Bengoetxea, Endika, Larrañaga, Pedro, Bielza, Concha, Pagonabarraga, Javier, Kulisevsky, Jaime, Corcuera-Solano, Idoia, Delfino, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 2
container_start_page 92
container_title Psychiatry research. Neuroimaging
container_volume 213
creator Morales, Dinora A
Vives-Gilabert, Yolanda
Gómez-Ansón, Beatriz
Bengoetxea, Endika
Larrañaga, Pedro
Bielza, Concha
Pagonabarraga, Javier
Kulisevsky, Jaime
Corcuera-Solano, Idoia
Delfino, Manuel
description Abstract Parkinson's disease (PD) has broadly been associated with mild cognitive impairment (PDMCI) and dementia (PDD). Researchers have studied surrogate, neuroanatomic biomarkers provided by magnetic resonance imaging (MRI) that may help in the early diagnosis of this condition. In this article, four classification models (naïve Bayes, multivariate filter-based naïve Bayes, filter selective naïve Bayes and support vector machines, SVM) have been applied to evaluate their capacity to discriminate between cognitively intact patients with Parkinson's disease (PDCI), PDMCI and PDD. For this purpose, the MRI studies of 45 subjects (16 PDCI, 15 PDMCI and 14 PDD) were acquired and post-processed with Freesurfer, obtaining 112 variables (volumes of subcortical structures and thickness of cortical parcels) per subject. A multivariate filter-based naïve Bayes model was found to be the best classifier, having the highest cross-validated sensitivity, specificity and accuracy. Additionally, the most relevant variables related to dementia in PD, as predicted by our classifiers, were cerebral white matter, and volumes of the lateral ventricles and hippocampi.
doi_str_mv 10.1016/j.pscychresns.2012.06.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520378605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925492712001254</els_id><sourcerecordid>1371270598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-3d38f9f7b756cd742b1005a83b8860147a9e403dcf0a9e1cba7446225f6b61f63</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhL6BwQHBJGNuJnVyQYMVHpUqtBBw4WY4zAe9mncWTFO2_x9EuFPUCJ4-l5x1b8wxjzzgUHLh6tSn25A7ue0QKVAjgogBVAPB7bMVrLXJdgbrPVtCIKi8boc_YI6INgJC1kg_ZmZC8bEDCin29jth5N_nwLetwh2HyNhU3OIz75Zb5kF3buPWBxvCCss4TWsJspiXx1h6QvA1ZwOnnGLeZGyyR7z1Geswe9HYgfHI6z9mX9-8-rz_ml1cfLtZvLnNXNtWUy07WfdPrVlfKdboULQeobC3bulbAS20bLEF2rodUcddaXZZKiKpXreK9kufs5bHvPo4_ZqTJ7Dw5HAYbcJzJ8EqA1KlX9W9Uai40VE2d0OaIujgSRezNPvqdjQfDwSwSzMb8JcEsEgwokySk7NPTM3O7w-5P8vfUE_D8BFhyduijDc7TLZf08UYt3PrIYZrfTRqqIecxuGQsoptMN_r_-s7rO13c4INPD28x6duMcwxJkOGGUsZ8WrZmWRouUjqV8hc3RMCZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1371270598</pqid></control><display><type>article</type><title>Predicting dementia development in Parkinson's disease using Bayesian network classifiers</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Morales, Dinora A ; Vives-Gilabert, Yolanda ; Gómez-Ansón, Beatriz ; Bengoetxea, Endika ; Larrañaga, Pedro ; Bielza, Concha ; Pagonabarraga, Javier ; Kulisevsky, Jaime ; Corcuera-Solano, Idoia ; Delfino, Manuel</creator><creatorcontrib>Morales, Dinora A ; Vives-Gilabert, Yolanda ; Gómez-Ansón, Beatriz ; Bengoetxea, Endika ; Larrañaga, Pedro ; Bielza, Concha ; Pagonabarraga, Javier ; Kulisevsky, Jaime ; Corcuera-Solano, Idoia ; Delfino, Manuel</creatorcontrib><description>Abstract Parkinson's disease (PD) has broadly been associated with mild cognitive impairment (PDMCI) and dementia (PDD). Researchers have studied surrogate, neuroanatomic biomarkers provided by magnetic resonance imaging (MRI) that may help in the early diagnosis of this condition. In this article, four classification models (naïve Bayes, multivariate filter-based naïve Bayes, filter selective naïve Bayes and support vector machines, SVM) have been applied to evaluate their capacity to discriminate between cognitively intact patients with Parkinson's disease (PDCI), PDMCI and PDD. For this purpose, the MRI studies of 45 subjects (16 PDCI, 15 PDMCI and 14 PDD) were acquired and post-processed with Freesurfer, obtaining 112 variables (volumes of subcortical structures and thickness of cortical parcels) per subject. A multivariate filter-based naïve Bayes model was found to be the best classifier, having the highest cross-validated sensitivity, specificity and accuracy. Additionally, the most relevant variables related to dementia in PD, as predicted by our classifiers, were cerebral white matter, and volumes of the lateral ventricles and hippocampi.</description><identifier>ISSN: 0925-4927</identifier><identifier>EISSN: 1872-7506</identifier><identifier>DOI: 10.1016/j.pscychresns.2012.06.001</identifier><identifier>PMID: 23149030</identifier><language>eng</language><publisher>Shannon: Elsevier Ireland Ltd</publisher><subject>Adult and adolescent clinical studies ; Aged ; Bayes Theorem ; Biological and medical sciences ; Brain - pathology ; Cognitive Dysfunction - complications ; Cognitive Dysfunction - diagnosis ; Cognitive Dysfunction - pathology ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Dementia - complications ; Dementia - diagnosis ; Dementia - pathology ; Feature selection ; Female ; Freesurfer segmentation ; Humans ; Image Interpretation, Computer-Assisted ; Machine learning methods ; Magnetic Resonance Imaging ; Male ; MCI ; Medical sciences ; MRI ; Nervous system (semeiology, syndromes) ; Nervous system as a whole ; Neuroimaging ; Neurology ; Organic mental disorders. Neuropsychology ; Parkinson Disease - complications ; Parkinson Disease - pathology ; Predictive Value of Tests ; Psychiatry ; Psychology. Psychoanalysis. Psychiatry ; Psychopathology. Psychiatry ; Radiology ; Sensitivity and Specificity ; Support Vector Machine</subject><ispartof>Psychiatry research. Neuroimaging, 2013-08, Vol.213 (2), p.92-98</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2012 Elsevier Ireland Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-3d38f9f7b756cd742b1005a83b8860147a9e403dcf0a9e1cba7446225f6b61f63</citedby><cites>FETCH-LOGICAL-c495t-3d38f9f7b756cd742b1005a83b8860147a9e403dcf0a9e1cba7446225f6b61f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.pscychresns.2012.06.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27501960$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23149030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morales, Dinora A</creatorcontrib><creatorcontrib>Vives-Gilabert, Yolanda</creatorcontrib><creatorcontrib>Gómez-Ansón, Beatriz</creatorcontrib><creatorcontrib>Bengoetxea, Endika</creatorcontrib><creatorcontrib>Larrañaga, Pedro</creatorcontrib><creatorcontrib>Bielza, Concha</creatorcontrib><creatorcontrib>Pagonabarraga, Javier</creatorcontrib><creatorcontrib>Kulisevsky, Jaime</creatorcontrib><creatorcontrib>Corcuera-Solano, Idoia</creatorcontrib><creatorcontrib>Delfino, Manuel</creatorcontrib><title>Predicting dementia development in Parkinson's disease using Bayesian network classifiers</title><title>Psychiatry research. Neuroimaging</title><addtitle>Psychiatry Res</addtitle><description>Abstract Parkinson's disease (PD) has broadly been associated with mild cognitive impairment (PDMCI) and dementia (PDD). Researchers have studied surrogate, neuroanatomic biomarkers provided by magnetic resonance imaging (MRI) that may help in the early diagnosis of this condition. In this article, four classification models (naïve Bayes, multivariate filter-based naïve Bayes, filter selective naïve Bayes and support vector machines, SVM) have been applied to evaluate their capacity to discriminate between cognitively intact patients with Parkinson's disease (PDCI), PDMCI and PDD. For this purpose, the MRI studies of 45 subjects (16 PDCI, 15 PDMCI and 14 PDD) were acquired and post-processed with Freesurfer, obtaining 112 variables (volumes of subcortical structures and thickness of cortical parcels) per subject. A multivariate filter-based naïve Bayes model was found to be the best classifier, having the highest cross-validated sensitivity, specificity and accuracy. Additionally, the most relevant variables related to dementia in PD, as predicted by our classifiers, were cerebral white matter, and volumes of the lateral ventricles and hippocampi.</description><subject>Adult and adolescent clinical studies</subject><subject>Aged</subject><subject>Bayes Theorem</subject><subject>Biological and medical sciences</subject><subject>Brain - pathology</subject><subject>Cognitive Dysfunction - complications</subject><subject>Cognitive Dysfunction - diagnosis</subject><subject>Cognitive Dysfunction - pathology</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Dementia - complications</subject><subject>Dementia - diagnosis</subject><subject>Dementia - pathology</subject><subject>Feature selection</subject><subject>Female</subject><subject>Freesurfer segmentation</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Machine learning methods</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>MCI</subject><subject>Medical sciences</subject><subject>MRI</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Nervous system as a whole</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Organic mental disorders. Neuropsychology</subject><subject>Parkinson Disease - complications</subject><subject>Parkinson Disease - pathology</subject><subject>Predictive Value of Tests</subject><subject>Psychiatry</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychopathology. Psychiatry</subject><subject>Radiology</subject><subject>Sensitivity and Specificity</subject><subject>Support Vector Machine</subject><issn>0925-4927</issn><issn>1872-7506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhi0EokvhL6BwQHBJGNuJnVyQYMVHpUqtBBw4WY4zAe9mncWTFO2_x9EuFPUCJ4-l5x1b8wxjzzgUHLh6tSn25A7ue0QKVAjgogBVAPB7bMVrLXJdgbrPVtCIKi8boc_YI6INgJC1kg_ZmZC8bEDCin29jth5N_nwLetwh2HyNhU3OIz75Zb5kF3buPWBxvCCss4TWsJspiXx1h6QvA1ZwOnnGLeZGyyR7z1Geswe9HYgfHI6z9mX9-8-rz_ml1cfLtZvLnNXNtWUy07WfdPrVlfKdboULQeobC3bulbAS20bLEF2rodUcddaXZZKiKpXreK9kufs5bHvPo4_ZqTJ7Dw5HAYbcJzJ8EqA1KlX9W9Uai40VE2d0OaIujgSRezNPvqdjQfDwSwSzMb8JcEsEgwokySk7NPTM3O7w-5P8vfUE_D8BFhyduijDc7TLZf08UYt3PrIYZrfTRqqIecxuGQsoptMN_r_-s7rO13c4INPD28x6duMcwxJkOGGUsZ8WrZmWRouUjqV8hc3RMCZ</recordid><startdate>20130830</startdate><enddate>20130830</enddate><creator>Morales, Dinora A</creator><creator>Vives-Gilabert, Yolanda</creator><creator>Gómez-Ansón, Beatriz</creator><creator>Bengoetxea, Endika</creator><creator>Larrañaga, Pedro</creator><creator>Bielza, Concha</creator><creator>Pagonabarraga, Javier</creator><creator>Kulisevsky, Jaime</creator><creator>Corcuera-Solano, Idoia</creator><creator>Delfino, Manuel</creator><general>Elsevier Ireland Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20130830</creationdate><title>Predicting dementia development in Parkinson's disease using Bayesian network classifiers</title><author>Morales, Dinora A ; Vives-Gilabert, Yolanda ; Gómez-Ansón, Beatriz ; Bengoetxea, Endika ; Larrañaga, Pedro ; Bielza, Concha ; Pagonabarraga, Javier ; Kulisevsky, Jaime ; Corcuera-Solano, Idoia ; Delfino, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-3d38f9f7b756cd742b1005a83b8860147a9e403dcf0a9e1cba7446225f6b61f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult and adolescent clinical studies</topic><topic>Aged</topic><topic>Bayes Theorem</topic><topic>Biological and medical sciences</topic><topic>Brain - pathology</topic><topic>Cognitive Dysfunction - complications</topic><topic>Cognitive Dysfunction - diagnosis</topic><topic>Cognitive Dysfunction - pathology</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Dementia - complications</topic><topic>Dementia - diagnosis</topic><topic>Dementia - pathology</topic><topic>Feature selection</topic><topic>Female</topic><topic>Freesurfer segmentation</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Machine learning methods</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>MCI</topic><topic>Medical sciences</topic><topic>MRI</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Nervous system as a whole</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Organic mental disorders. Neuropsychology</topic><topic>Parkinson Disease - complications</topic><topic>Parkinson Disease - pathology</topic><topic>Predictive Value of Tests</topic><topic>Psychiatry</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychopathology. Psychiatry</topic><topic>Radiology</topic><topic>Sensitivity and Specificity</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morales, Dinora A</creatorcontrib><creatorcontrib>Vives-Gilabert, Yolanda</creatorcontrib><creatorcontrib>Gómez-Ansón, Beatriz</creatorcontrib><creatorcontrib>Bengoetxea, Endika</creatorcontrib><creatorcontrib>Larrañaga, Pedro</creatorcontrib><creatorcontrib>Bielza, Concha</creatorcontrib><creatorcontrib>Pagonabarraga, Javier</creatorcontrib><creatorcontrib>Kulisevsky, Jaime</creatorcontrib><creatorcontrib>Corcuera-Solano, Idoia</creatorcontrib><creatorcontrib>Delfino, Manuel</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Psychiatry research. Neuroimaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morales, Dinora A</au><au>Vives-Gilabert, Yolanda</au><au>Gómez-Ansón, Beatriz</au><au>Bengoetxea, Endika</au><au>Larrañaga, Pedro</au><au>Bielza, Concha</au><au>Pagonabarraga, Javier</au><au>Kulisevsky, Jaime</au><au>Corcuera-Solano, Idoia</au><au>Delfino, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting dementia development in Parkinson's disease using Bayesian network classifiers</atitle><jtitle>Psychiatry research. Neuroimaging</jtitle><addtitle>Psychiatry Res</addtitle><date>2013-08-30</date><risdate>2013</risdate><volume>213</volume><issue>2</issue><spage>92</spage><epage>98</epage><pages>92-98</pages><issn>0925-4927</issn><eissn>1872-7506</eissn><abstract>Abstract Parkinson's disease (PD) has broadly been associated with mild cognitive impairment (PDMCI) and dementia (PDD). Researchers have studied surrogate, neuroanatomic biomarkers provided by magnetic resonance imaging (MRI) that may help in the early diagnosis of this condition. In this article, four classification models (naïve Bayes, multivariate filter-based naïve Bayes, filter selective naïve Bayes and support vector machines, SVM) have been applied to evaluate their capacity to discriminate between cognitively intact patients with Parkinson's disease (PDCI), PDMCI and PDD. For this purpose, the MRI studies of 45 subjects (16 PDCI, 15 PDMCI and 14 PDD) were acquired and post-processed with Freesurfer, obtaining 112 variables (volumes of subcortical structures and thickness of cortical parcels) per subject. A multivariate filter-based naïve Bayes model was found to be the best classifier, having the highest cross-validated sensitivity, specificity and accuracy. Additionally, the most relevant variables related to dementia in PD, as predicted by our classifiers, were cerebral white matter, and volumes of the lateral ventricles and hippocampi.</abstract><cop>Shannon</cop><pub>Elsevier Ireland Ltd</pub><pmid>23149030</pmid><doi>10.1016/j.pscychresns.2012.06.001</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4927
ispartof Psychiatry research. Neuroimaging, 2013-08, Vol.213 (2), p.92-98
issn 0925-4927
1872-7506
language eng
recordid cdi_proquest_miscellaneous_1520378605
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adult and adolescent clinical studies
Aged
Bayes Theorem
Biological and medical sciences
Brain - pathology
Cognitive Dysfunction - complications
Cognitive Dysfunction - diagnosis
Cognitive Dysfunction - pathology
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Dementia - complications
Dementia - diagnosis
Dementia - pathology
Feature selection
Female
Freesurfer segmentation
Humans
Image Interpretation, Computer-Assisted
Machine learning methods
Magnetic Resonance Imaging
Male
MCI
Medical sciences
MRI
Nervous system (semeiology, syndromes)
Nervous system as a whole
Neuroimaging
Neurology
Organic mental disorders. Neuropsychology
Parkinson Disease - complications
Parkinson Disease - pathology
Predictive Value of Tests
Psychiatry
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Radiology
Sensitivity and Specificity
Support Vector Machine
title Predicting dementia development in Parkinson's disease using Bayesian network classifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20dementia%20development%20in%20Parkinson's%20disease%20using%20Bayesian%20network%20classifiers&rft.jtitle=Psychiatry%20research.%20Neuroimaging&rft.au=Morales,%20Dinora%20A&rft.date=2013-08-30&rft.volume=213&rft.issue=2&rft.spage=92&rft.epage=98&rft.pages=92-98&rft.issn=0925-4927&rft.eissn=1872-7506&rft_id=info:doi/10.1016/j.pscychresns.2012.06.001&rft_dat=%3Cproquest_cross%3E1371270598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1371270598&rft_id=info:pmid/23149030&rft_els_id=S0925492712001254&rfr_iscdi=true