Antibacterial activity of polyacrylonitrile–chitosan electrospun nanofibers

•Polyacrylonitrile–chitosan electrospun nanofibers were manufactured.•Chitosan was blended uniformly throughout the PAN matrix up to 50wt%.•Alteration of Tg of PAN after blending with chitosan indicated molecular interaction.•The PAN–chitosan electrospun nanofibers inactivated some bacteria.•The PAN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2014-02, Vol.102, p.231-237
Hauptverfasser: Kim, Sam Soo, Lee, Jaewoong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue
container_start_page 231
container_title Carbohydrate polymers
container_volume 102
creator Kim, Sam Soo
Lee, Jaewoong
description •Polyacrylonitrile–chitosan electrospun nanofibers were manufactured.•Chitosan was blended uniformly throughout the PAN matrix up to 50wt%.•Alteration of Tg of PAN after blending with chitosan indicated molecular interaction.•The PAN–chitosan electrospun nanofibers inactivated some bacteria.•The PAN–chitosan nanofibers possessed higher antibacterial activities than film. Polyacrylonitrile (PAN)–chitosan double-face films and nanofibers were manufactured. PAN and a chitosan salt were dissolved in dimethyl sulfoxide, and then thin-layered on a glass plate or electro-spun followed by coagulation in sodium hydroxide solution. The morphology of the PAN–chitosan double-face films and nanofibers was analyzed by scanning electron microscopy. The thermal behavior and the glass transition temperature of PAN–chitosan blends were assessed by differential scanning calorimetry and dynamic mechanical analysis, respectively. The antibacterial efficacy was measured by a swatch test with bacterial suspensions. The PAN–chitosan nanofibers produced a 5-log reduction against Escherichia coli, Staphylococcus aureus, and Micrococcus luteus.
doi_str_mv 10.1016/j.carbpol.2013.11.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520368408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861713011685</els_id><sourcerecordid>1520368408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-eb54f6965ca74bf7562f78e5b2c4907da04cff07eca69fa77537ac6c445c47c53</originalsourceid><addsrcrecordid>eNqFkM1qGzEQx0VpaZy0j9Cwl0Ivu5W0-tg9hRCaD0jppT0L7XhEZWTJkdYB3_IOfcM-SWXsJscIhObwm5m_foR8YrRjlKmvqw5snjYpdJyyvmOso3x4QxZs0GPLeiHekgVlQrSDYvqEnJayovUoRt-TEy4k1VzrBfl-GWc_WZgxexuaWvhHP--a5Jo6e2ch70KKfs4-4N-nP_Dbz6nY2GBAmHMqm21soo3J-Qlz-UDeORsKfjy-Z-TX9befV7ft_Y-bu6vL-xYEH-YWJymcGpUEq8XktFTc6QHlxEGMVC8tFeAc1QhWjc5qLXttQYEQEoQG2Z-RL4e5m5wetlhms_YFMAQbMW2LYZLTXg2CDq-jYhyrJi7GisoDCvVjJaMzm-zXNu8Mo2Yv3azMUbrZSzeMmSq99p0fV2ynNS6fu_5brsDnI2AL2OCyjeDLCzf0rN59gIsDh9Xdo8dsCniMgEufq26zTP6VKP8APxCkzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499144249</pqid></control><display><type>article</type><title>Antibacterial activity of polyacrylonitrile–chitosan electrospun nanofibers</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Kim, Sam Soo ; Lee, Jaewoong</creator><creatorcontrib>Kim, Sam Soo ; Lee, Jaewoong</creatorcontrib><description>•Polyacrylonitrile–chitosan electrospun nanofibers were manufactured.•Chitosan was blended uniformly throughout the PAN matrix up to 50wt%.•Alteration of Tg of PAN after blending with chitosan indicated molecular interaction.•The PAN–chitosan electrospun nanofibers inactivated some bacteria.•The PAN–chitosan nanofibers possessed higher antibacterial activities than film. Polyacrylonitrile (PAN)–chitosan double-face films and nanofibers were manufactured. PAN and a chitosan salt were dissolved in dimethyl sulfoxide, and then thin-layered on a glass plate or electro-spun followed by coagulation in sodium hydroxide solution. The morphology of the PAN–chitosan double-face films and nanofibers was analyzed by scanning electron microscopy. The thermal behavior and the glass transition temperature of PAN–chitosan blends were assessed by differential scanning calorimetry and dynamic mechanical analysis, respectively. The antibacterial efficacy was measured by a swatch test with bacterial suspensions. The PAN–chitosan nanofibers produced a 5-log reduction against Escherichia coli, Staphylococcus aureus, and Micrococcus luteus.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2013.11.028</identifier><identifier>PMID: 24507277</identifier><identifier>CODEN: CAPOD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acrylic Resins - chemistry ; Acrylic Resins - pharmacology ; Anti-Bacterial Agents - pharmacology ; Antibacterial ; Applied sciences ; Calorimetry, Differential Scanning ; Chitosan ; Chitosan - chemistry ; Chitosan - pharmacology ; Escherichia coli ; Escherichia coli - drug effects ; Exact sciences and technology ; Fibers and threads ; Forms of application and semi-finished materials ; Microbial Sensitivity Tests ; Micrococcus luteus ; Micrococcus luteus - drug effects ; Microscopy, Electron, Scanning ; Nanofiber ; Nanofibers ; Polyacrylonitrile ; Polymer industry, paints, wood ; Staphylococcus aureus ; Staphylococcus aureus - drug effects ; Technology of polymers</subject><ispartof>Carbohydrate polymers, 2014-02, Vol.102, p.231-237</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-eb54f6965ca74bf7562f78e5b2c4907da04cff07eca69fa77537ac6c445c47c53</citedby><cites>FETCH-LOGICAL-c428t-eb54f6965ca74bf7562f78e5b2c4907da04cff07eca69fa77537ac6c445c47c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbpol.2013.11.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28312839$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24507277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Sam Soo</creatorcontrib><creatorcontrib>Lee, Jaewoong</creatorcontrib><title>Antibacterial activity of polyacrylonitrile–chitosan electrospun nanofibers</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•Polyacrylonitrile–chitosan electrospun nanofibers were manufactured.•Chitosan was blended uniformly throughout the PAN matrix up to 50wt%.•Alteration of Tg of PAN after blending with chitosan indicated molecular interaction.•The PAN–chitosan electrospun nanofibers inactivated some bacteria.•The PAN–chitosan nanofibers possessed higher antibacterial activities than film. Polyacrylonitrile (PAN)–chitosan double-face films and nanofibers were manufactured. PAN and a chitosan salt were dissolved in dimethyl sulfoxide, and then thin-layered on a glass plate or electro-spun followed by coagulation in sodium hydroxide solution. The morphology of the PAN–chitosan double-face films and nanofibers was analyzed by scanning electron microscopy. The thermal behavior and the glass transition temperature of PAN–chitosan blends were assessed by differential scanning calorimetry and dynamic mechanical analysis, respectively. The antibacterial efficacy was measured by a swatch test with bacterial suspensions. The PAN–chitosan nanofibers produced a 5-log reduction against Escherichia coli, Staphylococcus aureus, and Micrococcus luteus.</description><subject>Acrylic Resins - chemistry</subject><subject>Acrylic Resins - pharmacology</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibacterial</subject><subject>Applied sciences</subject><subject>Calorimetry, Differential Scanning</subject><subject>Chitosan</subject><subject>Chitosan - chemistry</subject><subject>Chitosan - pharmacology</subject><subject>Escherichia coli</subject><subject>Escherichia coli - drug effects</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Forms of application and semi-finished materials</subject><subject>Microbial Sensitivity Tests</subject><subject>Micrococcus luteus</subject><subject>Micrococcus luteus - drug effects</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanofiber</subject><subject>Nanofibers</subject><subject>Polyacrylonitrile</subject><subject>Polymer industry, paints, wood</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - drug effects</subject><subject>Technology of polymers</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1qGzEQx0VpaZy0j9Cwl0Ivu5W0-tg9hRCaD0jppT0L7XhEZWTJkdYB3_IOfcM-SWXsJscIhObwm5m_foR8YrRjlKmvqw5snjYpdJyyvmOso3x4QxZs0GPLeiHekgVlQrSDYvqEnJayovUoRt-TEy4k1VzrBfl-GWc_WZgxexuaWvhHP--a5Jo6e2ch70KKfs4-4N-nP_Dbz6nY2GBAmHMqm21soo3J-Qlz-UDeORsKfjy-Z-TX9befV7ft_Y-bu6vL-xYEH-YWJymcGpUEq8XktFTc6QHlxEGMVC8tFeAc1QhWjc5qLXttQYEQEoQG2Z-RL4e5m5wetlhms_YFMAQbMW2LYZLTXg2CDq-jYhyrJi7GisoDCvVjJaMzm-zXNu8Mo2Yv3azMUbrZSzeMmSq99p0fV2ynNS6fu_5brsDnI2AL2OCyjeDLCzf0rN59gIsDh9Xdo8dsCniMgEufq26zTP6VKP8APxCkzw</recordid><startdate>20140215</startdate><enddate>20140215</enddate><creator>Kim, Sam Soo</creator><creator>Lee, Jaewoong</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140215</creationdate><title>Antibacterial activity of polyacrylonitrile–chitosan electrospun nanofibers</title><author>Kim, Sam Soo ; Lee, Jaewoong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-eb54f6965ca74bf7562f78e5b2c4907da04cff07eca69fa77537ac6c445c47c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acrylic Resins - chemistry</topic><topic>Acrylic Resins - pharmacology</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibacterial</topic><topic>Applied sciences</topic><topic>Calorimetry, Differential Scanning</topic><topic>Chitosan</topic><topic>Chitosan - chemistry</topic><topic>Chitosan - pharmacology</topic><topic>Escherichia coli</topic><topic>Escherichia coli - drug effects</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Forms of application and semi-finished materials</topic><topic>Microbial Sensitivity Tests</topic><topic>Micrococcus luteus</topic><topic>Micrococcus luteus - drug effects</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanofiber</topic><topic>Nanofibers</topic><topic>Polyacrylonitrile</topic><topic>Polymer industry, paints, wood</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - drug effects</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sam Soo</creatorcontrib><creatorcontrib>Lee, Jaewoong</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sam Soo</au><au>Lee, Jaewoong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antibacterial activity of polyacrylonitrile–chitosan electrospun nanofibers</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2014-02-15</date><risdate>2014</risdate><volume>102</volume><spage>231</spage><epage>237</epage><pages>231-237</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><coden>CAPOD8</coden><abstract>•Polyacrylonitrile–chitosan electrospun nanofibers were manufactured.•Chitosan was blended uniformly throughout the PAN matrix up to 50wt%.•Alteration of Tg of PAN after blending with chitosan indicated molecular interaction.•The PAN–chitosan electrospun nanofibers inactivated some bacteria.•The PAN–chitosan nanofibers possessed higher antibacterial activities than film. Polyacrylonitrile (PAN)–chitosan double-face films and nanofibers were manufactured. PAN and a chitosan salt were dissolved in dimethyl sulfoxide, and then thin-layered on a glass plate or electro-spun followed by coagulation in sodium hydroxide solution. The morphology of the PAN–chitosan double-face films and nanofibers was analyzed by scanning electron microscopy. The thermal behavior and the glass transition temperature of PAN–chitosan blends were assessed by differential scanning calorimetry and dynamic mechanical analysis, respectively. The antibacterial efficacy was measured by a swatch test with bacterial suspensions. The PAN–chitosan nanofibers produced a 5-log reduction against Escherichia coli, Staphylococcus aureus, and Micrococcus luteus.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24507277</pmid><doi>10.1016/j.carbpol.2013.11.028</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2014-02, Vol.102, p.231-237
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_1520368408
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Acrylic Resins - chemistry
Acrylic Resins - pharmacology
Anti-Bacterial Agents - pharmacology
Antibacterial
Applied sciences
Calorimetry, Differential Scanning
Chitosan
Chitosan - chemistry
Chitosan - pharmacology
Escherichia coli
Escherichia coli - drug effects
Exact sciences and technology
Fibers and threads
Forms of application and semi-finished materials
Microbial Sensitivity Tests
Micrococcus luteus
Micrococcus luteus - drug effects
Microscopy, Electron, Scanning
Nanofiber
Nanofibers
Polyacrylonitrile
Polymer industry, paints, wood
Staphylococcus aureus
Staphylococcus aureus - drug effects
Technology of polymers
title Antibacterial activity of polyacrylonitrile–chitosan electrospun nanofibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antibacterial%20activity%20of%20polyacrylonitrile%E2%80%93chitosan%20electrospun%20nanofibers&rft.jtitle=Carbohydrate%20polymers&rft.au=Kim,%20Sam%20Soo&rft.date=2014-02-15&rft.volume=102&rft.spage=231&rft.epage=237&rft.pages=231-237&rft.issn=0144-8617&rft.eissn=1879-1344&rft.coden=CAPOD8&rft_id=info:doi/10.1016/j.carbpol.2013.11.028&rft_dat=%3Cproquest_cross%3E1520368408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499144249&rft_id=info:pmid/24507277&rft_els_id=S0144861713011685&rfr_iscdi=true