Optical detection of DNA translocation through silicon nanopore by ultraviolet light
In this paper, we propose a new optical detection scheme for nanopore-based DNA sequencing with high resolution towards eventual base identification. We use ultraviolet light for excitation of a fluorescent probe attached to DNA and a nanopore in the silicon membrane that has a significantly large r...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2014-04, Vol.115 (1), p.53-56 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 115 |
creator | Yamazaki, Hirohito Kimura, Shinji Tsukahara, Mutsumi Esashika, Keiko Saiki, Toshiharu |
description | In this paper, we propose a new optical detection scheme for nanopore-based DNA sequencing with high resolution towards eventual base identification. We use ultraviolet light for excitation of a fluorescent probe attached to DNA and a nanopore in the silicon membrane that has a significantly large refractive index and an extinction coefficient at ultraviolet wavelengths. In this study, numerical electromagnetic simulation revealed that the
z
-polarization component (perpendicular to the membrane plane) of the electric field was dominant near the nanopore and generated a large electric field gradient at the nanopore exit, typically with a decay length of 2 nm for a nanopore with diameter of 7 nm. The large extinction coefficient contributed to reduction in background noise coming from fluorophore-labeled DNA strands that remain behind the membrane (the
cis
side of the membrane). We observed a high signal-to-noise ratio of single DNA translocation events under the application of an electric field. |
doi_str_mv | 10.1007/s00339-013-7956-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520361675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520361675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-4f183d57e414ea30a5bef24d038ec2092dba7987634ccc0572bf7bd4ec8a49fb3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9g8sgTOH4mTsSqfUkWXMluO47Su3DjYDhL_Hpcyc8vpTs970j0I3RK4JwDiIQIw1hRAWCGasirgDM0IZ7SAisE5mkHDRVGzprpEVzHuIRendIY26zFZrRzuTDI6WT9g3-PH9wVOQQ3Rea1-l2kX_LTd4Wid1Xke1OBHHwxuv_HkMvtlvTMJO7vdpWt00SsXzc1fn6OP56fN8rVYrV_elotVoVktUsF7UrOuFIYTbhQDVbamp7wDVhtNoaFdq0RTi4pxrTWUgra9aDtudK1407dsju5Od8fgPycTkzzYqI1zajB-ipKUFFhFKlFmlJxQHXyMwfRyDPagwrckII8G5cmgzAbl0aCEnKGnTMzssDVB7v0UhvzRP6EfV8506A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520361675</pqid></control><display><type>article</type><title>Optical detection of DNA translocation through silicon nanopore by ultraviolet light</title><source>SpringerLink Journals</source><creator>Yamazaki, Hirohito ; Kimura, Shinji ; Tsukahara, Mutsumi ; Esashika, Keiko ; Saiki, Toshiharu</creator><creatorcontrib>Yamazaki, Hirohito ; Kimura, Shinji ; Tsukahara, Mutsumi ; Esashika, Keiko ; Saiki, Toshiharu</creatorcontrib><description>In this paper, we propose a new optical detection scheme for nanopore-based DNA sequencing with high resolution towards eventual base identification. We use ultraviolet light for excitation of a fluorescent probe attached to DNA and a nanopore in the silicon membrane that has a significantly large refractive index and an extinction coefficient at ultraviolet wavelengths. In this study, numerical electromagnetic simulation revealed that the
z
-polarization component (perpendicular to the membrane plane) of the electric field was dominant near the nanopore and generated a large electric field gradient at the nanopore exit, typically with a decay length of 2 nm for a nanopore with diameter of 7 nm. The large extinction coefficient contributed to reduction in background noise coming from fluorophore-labeled DNA strands that remain behind the membrane (the
cis
side of the membrane). We observed a high signal-to-noise ratio of single DNA translocation events under the application of an electric field.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-013-7956-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Invited Paper ; Machines ; Manufacturing ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2014-04, Vol.115 (1), p.53-56</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-4f183d57e414ea30a5bef24d038ec2092dba7987634ccc0572bf7bd4ec8a49fb3</citedby><cites>FETCH-LOGICAL-c387t-4f183d57e414ea30a5bef24d038ec2092dba7987634ccc0572bf7bd4ec8a49fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-013-7956-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-013-7956-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yamazaki, Hirohito</creatorcontrib><creatorcontrib>Kimura, Shinji</creatorcontrib><creatorcontrib>Tsukahara, Mutsumi</creatorcontrib><creatorcontrib>Esashika, Keiko</creatorcontrib><creatorcontrib>Saiki, Toshiharu</creatorcontrib><title>Optical detection of DNA translocation through silicon nanopore by ultraviolet light</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>In this paper, we propose a new optical detection scheme for nanopore-based DNA sequencing with high resolution towards eventual base identification. We use ultraviolet light for excitation of a fluorescent probe attached to DNA and a nanopore in the silicon membrane that has a significantly large refractive index and an extinction coefficient at ultraviolet wavelengths. In this study, numerical electromagnetic simulation revealed that the
z
-polarization component (perpendicular to the membrane plane) of the electric field was dominant near the nanopore and generated a large electric field gradient at the nanopore exit, typically with a decay length of 2 nm for a nanopore with diameter of 7 nm. The large extinction coefficient contributed to reduction in background noise coming from fluorophore-labeled DNA strands that remain behind the membrane (the
cis
side of the membrane). We observed a high signal-to-noise ratio of single DNA translocation events under the application of an electric field.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Invited Paper</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9g8sgTOH4mTsSqfUkWXMluO47Su3DjYDhL_Hpcyc8vpTs970j0I3RK4JwDiIQIw1hRAWCGasirgDM0IZ7SAisE5mkHDRVGzprpEVzHuIRendIY26zFZrRzuTDI6WT9g3-PH9wVOQQ3Rea1-l2kX_LTd4Wid1Xke1OBHHwxuv_HkMvtlvTMJO7vdpWt00SsXzc1fn6OP56fN8rVYrV_elotVoVktUsF7UrOuFIYTbhQDVbamp7wDVhtNoaFdq0RTi4pxrTWUgra9aDtudK1407dsju5Od8fgPycTkzzYqI1zajB-ipKUFFhFKlFmlJxQHXyMwfRyDPagwrckII8G5cmgzAbl0aCEnKGnTMzssDVB7v0UhvzRP6EfV8506A</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Yamazaki, Hirohito</creator><creator>Kimura, Shinji</creator><creator>Tsukahara, Mutsumi</creator><creator>Esashika, Keiko</creator><creator>Saiki, Toshiharu</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>20140401</creationdate><title>Optical detection of DNA translocation through silicon nanopore by ultraviolet light</title><author>Yamazaki, Hirohito ; Kimura, Shinji ; Tsukahara, Mutsumi ; Esashika, Keiko ; Saiki, Toshiharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-4f183d57e414ea30a5bef24d038ec2092dba7987634ccc0572bf7bd4ec8a49fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Invited Paper</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamazaki, Hirohito</creatorcontrib><creatorcontrib>Kimura, Shinji</creatorcontrib><creatorcontrib>Tsukahara, Mutsumi</creatorcontrib><creatorcontrib>Esashika, Keiko</creatorcontrib><creatorcontrib>Saiki, Toshiharu</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamazaki, Hirohito</au><au>Kimura, Shinji</au><au>Tsukahara, Mutsumi</au><au>Esashika, Keiko</au><au>Saiki, Toshiharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical detection of DNA translocation through silicon nanopore by ultraviolet light</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>115</volume><issue>1</issue><spage>53</spage><epage>56</epage><pages>53-56</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this paper, we propose a new optical detection scheme for nanopore-based DNA sequencing with high resolution towards eventual base identification. We use ultraviolet light for excitation of a fluorescent probe attached to DNA and a nanopore in the silicon membrane that has a significantly large refractive index and an extinction coefficient at ultraviolet wavelengths. In this study, numerical electromagnetic simulation revealed that the
z
-polarization component (perpendicular to the membrane plane) of the electric field was dominant near the nanopore and generated a large electric field gradient at the nanopore exit, typically with a decay length of 2 nm for a nanopore with diameter of 7 nm. The large extinction coefficient contributed to reduction in background noise coming from fluorophore-labeled DNA strands that remain behind the membrane (the
cis
side of the membrane). We observed a high signal-to-noise ratio of single DNA translocation events under the application of an electric field.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-013-7956-0</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2014-04, Vol.115 (1), p.53-56 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520361675 |
source | SpringerLink Journals |
subjects | Characterization and Evaluation of Materials Condensed Matter Physics Invited Paper Machines Manufacturing Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Processes Surfaces and Interfaces Thin Films |
title | Optical detection of DNA translocation through silicon nanopore by ultraviolet light |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20detection%20of%20DNA%20translocation%20through%20silicon%20nanopore%20by%20ultraviolet%20light&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Yamazaki,%20Hirohito&rft.date=2014-04-01&rft.volume=115&rft.issue=1&rft.spage=53&rft.epage=56&rft.pages=53-56&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-013-7956-0&rft_dat=%3Cproquest_cross%3E1520361675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520361675&rft_id=info:pmid/&rfr_iscdi=true |