Optical detection of DNA translocation through silicon nanopore by ultraviolet light

In this paper, we propose a new optical detection scheme for nanopore-based DNA sequencing with high resolution towards eventual base identification. We use ultraviolet light for excitation of a fluorescent probe attached to DNA and a nanopore in the silicon membrane that has a significantly large r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2014-04, Vol.115 (1), p.53-56
Hauptverfasser: Yamazaki, Hirohito, Kimura, Shinji, Tsukahara, Mutsumi, Esashika, Keiko, Saiki, Toshiharu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 53
container_title Applied physics. A, Materials science & processing
container_volume 115
creator Yamazaki, Hirohito
Kimura, Shinji
Tsukahara, Mutsumi
Esashika, Keiko
Saiki, Toshiharu
description In this paper, we propose a new optical detection scheme for nanopore-based DNA sequencing with high resolution towards eventual base identification. We use ultraviolet light for excitation of a fluorescent probe attached to DNA and a nanopore in the silicon membrane that has a significantly large refractive index and an extinction coefficient at ultraviolet wavelengths. In this study, numerical electromagnetic simulation revealed that the z -polarization component (perpendicular to the membrane plane) of the electric field was dominant near the nanopore and generated a large electric field gradient at the nanopore exit, typically with a decay length of 2 nm for a nanopore with diameter of 7 nm. The large extinction coefficient contributed to reduction in background noise coming from fluorophore-labeled DNA strands that remain behind the membrane (the cis side of the membrane). We observed a high signal-to-noise ratio of single DNA translocation events under the application of an electric field.
doi_str_mv 10.1007/s00339-013-7956-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520361675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520361675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-4f183d57e414ea30a5bef24d038ec2092dba7987634ccc0572bf7bd4ec8a49fb3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9g8sgTOH4mTsSqfUkWXMluO47Su3DjYDhL_Hpcyc8vpTs970j0I3RK4JwDiIQIw1hRAWCGasirgDM0IZ7SAisE5mkHDRVGzprpEVzHuIRendIY26zFZrRzuTDI6WT9g3-PH9wVOQQ3Rea1-l2kX_LTd4Wid1Xke1OBHHwxuv_HkMvtlvTMJO7vdpWt00SsXzc1fn6OP56fN8rVYrV_elotVoVktUsF7UrOuFIYTbhQDVbamp7wDVhtNoaFdq0RTi4pxrTWUgra9aDtudK1407dsju5Od8fgPycTkzzYqI1zajB-ipKUFFhFKlFmlJxQHXyMwfRyDPagwrckII8G5cmgzAbl0aCEnKGnTMzssDVB7v0UhvzRP6EfV8506A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520361675</pqid></control><display><type>article</type><title>Optical detection of DNA translocation through silicon nanopore by ultraviolet light</title><source>SpringerLink Journals</source><creator>Yamazaki, Hirohito ; Kimura, Shinji ; Tsukahara, Mutsumi ; Esashika, Keiko ; Saiki, Toshiharu</creator><creatorcontrib>Yamazaki, Hirohito ; Kimura, Shinji ; Tsukahara, Mutsumi ; Esashika, Keiko ; Saiki, Toshiharu</creatorcontrib><description>In this paper, we propose a new optical detection scheme for nanopore-based DNA sequencing with high resolution towards eventual base identification. We use ultraviolet light for excitation of a fluorescent probe attached to DNA and a nanopore in the silicon membrane that has a significantly large refractive index and an extinction coefficient at ultraviolet wavelengths. In this study, numerical electromagnetic simulation revealed that the z -polarization component (perpendicular to the membrane plane) of the electric field was dominant near the nanopore and generated a large electric field gradient at the nanopore exit, typically with a decay length of 2 nm for a nanopore with diameter of 7 nm. The large extinction coefficient contributed to reduction in background noise coming from fluorophore-labeled DNA strands that remain behind the membrane (the cis side of the membrane). We observed a high signal-to-noise ratio of single DNA translocation events under the application of an electric field.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-013-7956-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Invited Paper ; Machines ; Manufacturing ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2014-04, Vol.115 (1), p.53-56</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-4f183d57e414ea30a5bef24d038ec2092dba7987634ccc0572bf7bd4ec8a49fb3</citedby><cites>FETCH-LOGICAL-c387t-4f183d57e414ea30a5bef24d038ec2092dba7987634ccc0572bf7bd4ec8a49fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-013-7956-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-013-7956-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yamazaki, Hirohito</creatorcontrib><creatorcontrib>Kimura, Shinji</creatorcontrib><creatorcontrib>Tsukahara, Mutsumi</creatorcontrib><creatorcontrib>Esashika, Keiko</creatorcontrib><creatorcontrib>Saiki, Toshiharu</creatorcontrib><title>Optical detection of DNA translocation through silicon nanopore by ultraviolet light</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>In this paper, we propose a new optical detection scheme for nanopore-based DNA sequencing with high resolution towards eventual base identification. We use ultraviolet light for excitation of a fluorescent probe attached to DNA and a nanopore in the silicon membrane that has a significantly large refractive index and an extinction coefficient at ultraviolet wavelengths. In this study, numerical electromagnetic simulation revealed that the z -polarization component (perpendicular to the membrane plane) of the electric field was dominant near the nanopore and generated a large electric field gradient at the nanopore exit, typically with a decay length of 2 nm for a nanopore with diameter of 7 nm. The large extinction coefficient contributed to reduction in background noise coming from fluorophore-labeled DNA strands that remain behind the membrane (the cis side of the membrane). We observed a high signal-to-noise ratio of single DNA translocation events under the application of an electric field.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Invited Paper</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9g8sgTOH4mTsSqfUkWXMluO47Su3DjYDhL_Hpcyc8vpTs970j0I3RK4JwDiIQIw1hRAWCGasirgDM0IZ7SAisE5mkHDRVGzprpEVzHuIRendIY26zFZrRzuTDI6WT9g3-PH9wVOQQ3Rea1-l2kX_LTd4Wid1Xke1OBHHwxuv_HkMvtlvTMJO7vdpWt00SsXzc1fn6OP56fN8rVYrV_elotVoVktUsF7UrOuFIYTbhQDVbamp7wDVhtNoaFdq0RTi4pxrTWUgra9aDtudK1407dsju5Od8fgPycTkzzYqI1zajB-ipKUFFhFKlFmlJxQHXyMwfRyDPagwrckII8G5cmgzAbl0aCEnKGnTMzssDVB7v0UhvzRP6EfV8506A</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Yamazaki, Hirohito</creator><creator>Kimura, Shinji</creator><creator>Tsukahara, Mutsumi</creator><creator>Esashika, Keiko</creator><creator>Saiki, Toshiharu</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>20140401</creationdate><title>Optical detection of DNA translocation through silicon nanopore by ultraviolet light</title><author>Yamazaki, Hirohito ; Kimura, Shinji ; Tsukahara, Mutsumi ; Esashika, Keiko ; Saiki, Toshiharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-4f183d57e414ea30a5bef24d038ec2092dba7987634ccc0572bf7bd4ec8a49fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Invited Paper</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamazaki, Hirohito</creatorcontrib><creatorcontrib>Kimura, Shinji</creatorcontrib><creatorcontrib>Tsukahara, Mutsumi</creatorcontrib><creatorcontrib>Esashika, Keiko</creatorcontrib><creatorcontrib>Saiki, Toshiharu</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamazaki, Hirohito</au><au>Kimura, Shinji</au><au>Tsukahara, Mutsumi</au><au>Esashika, Keiko</au><au>Saiki, Toshiharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical detection of DNA translocation through silicon nanopore by ultraviolet light</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>115</volume><issue>1</issue><spage>53</spage><epage>56</epage><pages>53-56</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In this paper, we propose a new optical detection scheme for nanopore-based DNA sequencing with high resolution towards eventual base identification. We use ultraviolet light for excitation of a fluorescent probe attached to DNA and a nanopore in the silicon membrane that has a significantly large refractive index and an extinction coefficient at ultraviolet wavelengths. In this study, numerical electromagnetic simulation revealed that the z -polarization component (perpendicular to the membrane plane) of the electric field was dominant near the nanopore and generated a large electric field gradient at the nanopore exit, typically with a decay length of 2 nm for a nanopore with diameter of 7 nm. The large extinction coefficient contributed to reduction in background noise coming from fluorophore-labeled DNA strands that remain behind the membrane (the cis side of the membrane). We observed a high signal-to-noise ratio of single DNA translocation events under the application of an electric field.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-013-7956-0</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2014-04, Vol.115 (1), p.53-56
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1520361675
source SpringerLink Journals
subjects Characterization and Evaluation of Materials
Condensed Matter Physics
Invited Paper
Machines
Manufacturing
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Surfaces and Interfaces
Thin Films
title Optical detection of DNA translocation through silicon nanopore by ultraviolet light
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20detection%20of%20DNA%20translocation%20through%20silicon%20nanopore%20by%20ultraviolet%20light&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Yamazaki,%20Hirohito&rft.date=2014-04-01&rft.volume=115&rft.issue=1&rft.spage=53&rft.epage=56&rft.pages=53-56&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-013-7956-0&rft_dat=%3Cproquest_cross%3E1520361675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520361675&rft_id=info:pmid/&rfr_iscdi=true