Early reversible induction of leukotriene synthesis in chicken myelomonocytic cells transformed by a temperature-sensitive mutant of avian leukemia virus E26

We used chicken myelomonocytic cells transformed by a temperature-sensitive mutant of the myb/ets oncogene-containing avian leukemia virus E26 to study the regulation of leukotriene (LT) synthesis during macrophage differentiation. Cells exposed to arachidonic acid and the Ca2+ ionophore 23187 produ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1989-02, Vol.86 (3), p.921-924
Hauptverfasser: Habenicht, A.J.R, Goerig, M, Rothe, D.E.R, Specht, E, Ziegler, R, Glomset, J.A, Graf, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 924
container_issue 3
container_start_page 921
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 86
creator Habenicht, A.J.R
Goerig, M
Rothe, D.E.R
Specht, E
Ziegler, R
Glomset, J.A
Graf, T
description We used chicken myelomonocytic cells transformed by a temperature-sensitive mutant of the myb/ets oncogene-containing avian leukemia virus E26 to study the regulation of leukotriene (LT) synthesis during macrophage differentiation. Cells exposed to arachidonic acid and the Ca2+ ionophore 23187 produced up to 180 times more LTs at the nonpermissive temperature (42 degrees C) than at the permissive temperature (37 degrees C). Induction of LT synthesis was detectable within 2 hr after temperature shift, whereas conventional macrophage markers became evident after 2-3 days. N-Formylmethionylleucylphenylalanine, opsonized zymosan, and complement factor C5a induced LT synthesis in temperature-sensitive mutant-transformed cells only when the cells were maintained at 42 degrees C, and this effect was blocked by pertussis toxin. When cells were kept at 42 degrees C for 48 hr and then shifted back to 37 degrees C to induce retrodifferentiation, LT synthesis rates declined within 8 hr and reached near control values within 36 hr. Retrodifferentiation also led to decreased LT synthesis in response to N-formylmethionylleucylphenylalanine, opsonized zymosan, and C5a. These results indicate that activation of the 5-lipoxygenase pathway is a very early event in the macrophage differentiation pathway that is directly or indirectly controlled by the temperature-sensitive v-myb protein.
doi_str_mv 10.1073/pnas.86.3.921
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_15195021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>33312</jstor_id><sourcerecordid>33312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-1a343af530aa8f7bb4ad9cc043d7339b76c071dbb4424d83f734dbfc74b8d8963</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEKkvhyAWB5ANwy2LHSWwfekDV8iFV4gA9W44z7rp17MV2VuTH8F_JfrCUC5ws-X1m5p15i-I5wUuCGX238SotebukS1GRB8WCYEHKthb4YbHAuGIlr6v6cfEkpVuMsWg4PivOqoa2grJF8XOloptQhC3EZDsHyPp-1NkGj4JBDsa7kKMFDyhNPq8h2TQjSK-tvgOPhglcGIIPespWIw3OJZSj8smEOECPugkplGHYQFR5jFAm8MlmuwU0jFn5vBujtlb5_TAYrEJbG8eEVlX7tHhklEvw7PieF9cfVt8uP5VXXz5-vnx_VepGtLkkitZUmYZipbhhXVerXmiNa9ozSkXHWo0Z6ef_-RQ9p4bRuu-MZnXHey5ael5cHPpuxm42rcHPKzi5iXZQcZJBWfm34u1a3oStrHjbCDzXvz3Wx_B9hJTlYNPuFspDGJNknFPRNv8HSUNEgysyg-UB1DGkFMGczBAsd7nLXe6St5JKsedf3d_gRB-DnvXXR10lrZyZE9I2nTBGKtLsD_HyiO26_1bvTXnzD1ma0bkMP_LMvThwtymHeAIppaT6IxoVpLqJs43rr1zgitOK_gJNTOQm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15195021</pqid></control><display><type>article</type><title>Early reversible induction of leukotriene synthesis in chicken myelomonocytic cells transformed by a temperature-sensitive mutant of avian leukemia virus E26</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Habenicht, A.J.R ; Goerig, M ; Rothe, D.E.R ; Specht, E ; Ziegler, R ; Glomset, J.A ; Graf, T</creator><creatorcontrib>Habenicht, A.J.R ; Goerig, M ; Rothe, D.E.R ; Specht, E ; Ziegler, R ; Glomset, J.A ; Graf, T</creatorcontrib><description>We used chicken myelomonocytic cells transformed by a temperature-sensitive mutant of the myb/ets oncogene-containing avian leukemia virus E26 to study the regulation of leukotriene (LT) synthesis during macrophage differentiation. Cells exposed to arachidonic acid and the Ca2+ ionophore 23187 produced up to 180 times more LTs at the nonpermissive temperature (42 degrees C) than at the permissive temperature (37 degrees C). Induction of LT synthesis was detectable within 2 hr after temperature shift, whereas conventional macrophage markers became evident after 2-3 days. N-Formylmethionylleucylphenylalanine, opsonized zymosan, and complement factor C5a induced LT synthesis in temperature-sensitive mutant-transformed cells only when the cells were maintained at 42 degrees C, and this effect was blocked by pertussis toxin. When cells were kept at 42 degrees C for 48 hr and then shifted back to 37 degrees C to induce retrodifferentiation, LT synthesis rates declined within 8 hr and reached near control values within 36 hr. Retrodifferentiation also led to decreased LT synthesis in response to N-formylmethionylleucylphenylalanine, opsonized zymosan, and C5a. These results indicate that activation of the 5-lipoxygenase pathway is a very early event in the macrophage differentiation pathway that is directly or indirectly controlled by the temperature-sensitive v-myb protein.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.86.3.921</identifier><identifier>PMID: 2536937</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Agonists ; Animals ; Arachidonic Acid ; Arachidonic Acids - metabolism ; avian leukosis virus ; Avian Leukosis Virus - genetics ; AVIAN ONCOVIRUS ; Biological and medical sciences ; Blood cells ; Bone marrow ; Cell Line ; Cell Transformation, Neoplastic ; CELLS ; Cells, Cultured ; Cellular differentiation ; CELLULE ; CELULAS ; CHICKENS ; Cycloheximide - pharmacology ; Dactinomycin - pharmacology ; FAGOCITOS ; FONCTION PHYSIOLOGIQUE ; FUNCION FISIOLOGICA ; Fundamental and applied biological sciences. Psychology ; Fundamental immunology ; Immunobiology ; Kinetics ; Leukotriene B4 - biosynthesis ; Leukotrienes ; Macrophages ; Macrophages - cytology ; Macrophages - drug effects ; Macrophages - metabolism ; METABOLITE ; METABOLITES ; METABOLITOS ; MUTANT ; MUTANTES ; MUTANTS ; Mutation ; Myeloid cells: ontogeny, maturation, markers, receptors ; N-Formylmethionine Leucyl-Phenylalanine - pharmacology ; Oncogenes ; ONCOVIRUS AVIAIRE ; ONCOVIRUS AVIAR ; PHAGOCYTE ; PHAGOCYTES ; PHYSIOLOGICAL FUNCTIONS ; POLLO ; POULET ; SRS-A - biosynthesis ; TEMPERATURA ; TEMPERATURE ; Up regulation ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1989-02, Vol.86 (3), p.921-924</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-1a343af530aa8f7bb4ad9cc043d7339b76c071dbb4424d83f734dbfc74b8d8963</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/86/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/33312$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/33312$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27933,27934,53800,53802,58026,58259</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7121596$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2536937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Habenicht, A.J.R</creatorcontrib><creatorcontrib>Goerig, M</creatorcontrib><creatorcontrib>Rothe, D.E.R</creatorcontrib><creatorcontrib>Specht, E</creatorcontrib><creatorcontrib>Ziegler, R</creatorcontrib><creatorcontrib>Glomset, J.A</creatorcontrib><creatorcontrib>Graf, T</creatorcontrib><title>Early reversible induction of leukotriene synthesis in chicken myelomonocytic cells transformed by a temperature-sensitive mutant of avian leukemia virus E26</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We used chicken myelomonocytic cells transformed by a temperature-sensitive mutant of the myb/ets oncogene-containing avian leukemia virus E26 to study the regulation of leukotriene (LT) synthesis during macrophage differentiation. Cells exposed to arachidonic acid and the Ca2+ ionophore 23187 produced up to 180 times more LTs at the nonpermissive temperature (42 degrees C) than at the permissive temperature (37 degrees C). Induction of LT synthesis was detectable within 2 hr after temperature shift, whereas conventional macrophage markers became evident after 2-3 days. N-Formylmethionylleucylphenylalanine, opsonized zymosan, and complement factor C5a induced LT synthesis in temperature-sensitive mutant-transformed cells only when the cells were maintained at 42 degrees C, and this effect was blocked by pertussis toxin. When cells were kept at 42 degrees C for 48 hr and then shifted back to 37 degrees C to induce retrodifferentiation, LT synthesis rates declined within 8 hr and reached near control values within 36 hr. Retrodifferentiation also led to decreased LT synthesis in response to N-formylmethionylleucylphenylalanine, opsonized zymosan, and C5a. These results indicate that activation of the 5-lipoxygenase pathway is a very early event in the macrophage differentiation pathway that is directly or indirectly controlled by the temperature-sensitive v-myb protein.</description><subject>Agonists</subject><subject>Animals</subject><subject>Arachidonic Acid</subject><subject>Arachidonic Acids - metabolism</subject><subject>avian leukosis virus</subject><subject>Avian Leukosis Virus - genetics</subject><subject>AVIAN ONCOVIRUS</subject><subject>Biological and medical sciences</subject><subject>Blood cells</subject><subject>Bone marrow</subject><subject>Cell Line</subject><subject>Cell Transformation, Neoplastic</subject><subject>CELLS</subject><subject>Cells, Cultured</subject><subject>Cellular differentiation</subject><subject>CELLULE</subject><subject>CELULAS</subject><subject>CHICKENS</subject><subject>Cycloheximide - pharmacology</subject><subject>Dactinomycin - pharmacology</subject><subject>FAGOCITOS</subject><subject>FONCTION PHYSIOLOGIQUE</subject><subject>FUNCION FISIOLOGICA</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental immunology</subject><subject>Immunobiology</subject><subject>Kinetics</subject><subject>Leukotriene B4 - biosynthesis</subject><subject>Leukotrienes</subject><subject>Macrophages</subject><subject>Macrophages - cytology</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>METABOLITE</subject><subject>METABOLITES</subject><subject>METABOLITOS</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>Myeloid cells: ontogeny, maturation, markers, receptors</subject><subject>N-Formylmethionine Leucyl-Phenylalanine - pharmacology</subject><subject>Oncogenes</subject><subject>ONCOVIRUS AVIAIRE</subject><subject>ONCOVIRUS AVIAR</subject><subject>PHAGOCYTE</subject><subject>PHAGOCYTES</subject><subject>PHYSIOLOGICAL FUNCTIONS</subject><subject>POLLO</subject><subject>POULET</subject><subject>SRS-A - biosynthesis</subject><subject>TEMPERATURA</subject><subject>TEMPERATURE</subject><subject>Up regulation</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEKkvhyAWB5ANwy2LHSWwfekDV8iFV4gA9W44z7rp17MV2VuTH8F_JfrCUC5ws-X1m5p15i-I5wUuCGX238SotebukS1GRB8WCYEHKthb4YbHAuGIlr6v6cfEkpVuMsWg4PivOqoa2grJF8XOloptQhC3EZDsHyPp-1NkGj4JBDsa7kKMFDyhNPq8h2TQjSK-tvgOPhglcGIIPespWIw3OJZSj8smEOECPugkplGHYQFR5jFAm8MlmuwU0jFn5vBujtlb5_TAYrEJbG8eEVlX7tHhklEvw7PieF9cfVt8uP5VXXz5-vnx_VepGtLkkitZUmYZipbhhXVerXmiNa9ozSkXHWo0Z6ef_-RQ9p4bRuu-MZnXHey5ael5cHPpuxm42rcHPKzi5iXZQcZJBWfm34u1a3oStrHjbCDzXvz3Wx_B9hJTlYNPuFspDGJNknFPRNv8HSUNEgysyg-UB1DGkFMGczBAsd7nLXe6St5JKsedf3d_gRB-DnvXXR10lrZyZE9I2nTBGKtLsD_HyiO26_1bvTXnzD1ma0bkMP_LMvThwtymHeAIppaT6IxoVpLqJs43rr1zgitOK_gJNTOQm</recordid><startdate>19890201</startdate><enddate>19890201</enddate><creator>Habenicht, A.J.R</creator><creator>Goerig, M</creator><creator>Rothe, D.E.R</creator><creator>Specht, E</creator><creator>Ziegler, R</creator><creator>Glomset, J.A</creator><creator>Graf, T</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19890201</creationdate><title>Early reversible induction of leukotriene synthesis in chicken myelomonocytic cells transformed by a temperature-sensitive mutant of avian leukemia virus E26</title><author>Habenicht, A.J.R ; Goerig, M ; Rothe, D.E.R ; Specht, E ; Ziegler, R ; Glomset, J.A ; Graf, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-1a343af530aa8f7bb4ad9cc043d7339b76c071dbb4424d83f734dbfc74b8d8963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Agonists</topic><topic>Animals</topic><topic>Arachidonic Acid</topic><topic>Arachidonic Acids - metabolism</topic><topic>avian leukosis virus</topic><topic>Avian Leukosis Virus - genetics</topic><topic>AVIAN ONCOVIRUS</topic><topic>Biological and medical sciences</topic><topic>Blood cells</topic><topic>Bone marrow</topic><topic>Cell Line</topic><topic>Cell Transformation, Neoplastic</topic><topic>CELLS</topic><topic>Cells, Cultured</topic><topic>Cellular differentiation</topic><topic>CELLULE</topic><topic>CELULAS</topic><topic>CHICKENS</topic><topic>Cycloheximide - pharmacology</topic><topic>Dactinomycin - pharmacology</topic><topic>FAGOCITOS</topic><topic>FONCTION PHYSIOLOGIQUE</topic><topic>FUNCION FISIOLOGICA</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental immunology</topic><topic>Immunobiology</topic><topic>Kinetics</topic><topic>Leukotriene B4 - biosynthesis</topic><topic>Leukotrienes</topic><topic>Macrophages</topic><topic>Macrophages - cytology</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>METABOLITE</topic><topic>METABOLITES</topic><topic>METABOLITOS</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>Myeloid cells: ontogeny, maturation, markers, receptors</topic><topic>N-Formylmethionine Leucyl-Phenylalanine - pharmacology</topic><topic>Oncogenes</topic><topic>ONCOVIRUS AVIAIRE</topic><topic>ONCOVIRUS AVIAR</topic><topic>PHAGOCYTE</topic><topic>PHAGOCYTES</topic><topic>PHYSIOLOGICAL FUNCTIONS</topic><topic>POLLO</topic><topic>POULET</topic><topic>SRS-A - biosynthesis</topic><topic>TEMPERATURA</topic><topic>TEMPERATURE</topic><topic>Up regulation</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habenicht, A.J.R</creatorcontrib><creatorcontrib>Goerig, M</creatorcontrib><creatorcontrib>Rothe, D.E.R</creatorcontrib><creatorcontrib>Specht, E</creatorcontrib><creatorcontrib>Ziegler, R</creatorcontrib><creatorcontrib>Glomset, J.A</creatorcontrib><creatorcontrib>Graf, T</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habenicht, A.J.R</au><au>Goerig, M</au><au>Rothe, D.E.R</au><au>Specht, E</au><au>Ziegler, R</au><au>Glomset, J.A</au><au>Graf, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early reversible induction of leukotriene synthesis in chicken myelomonocytic cells transformed by a temperature-sensitive mutant of avian leukemia virus E26</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1989-02-01</date><risdate>1989</risdate><volume>86</volume><issue>3</issue><spage>921</spage><epage>924</epage><pages>921-924</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>We used chicken myelomonocytic cells transformed by a temperature-sensitive mutant of the myb/ets oncogene-containing avian leukemia virus E26 to study the regulation of leukotriene (LT) synthesis during macrophage differentiation. Cells exposed to arachidonic acid and the Ca2+ ionophore 23187 produced up to 180 times more LTs at the nonpermissive temperature (42 degrees C) than at the permissive temperature (37 degrees C). Induction of LT synthesis was detectable within 2 hr after temperature shift, whereas conventional macrophage markers became evident after 2-3 days. N-Formylmethionylleucylphenylalanine, opsonized zymosan, and complement factor C5a induced LT synthesis in temperature-sensitive mutant-transformed cells only when the cells were maintained at 42 degrees C, and this effect was blocked by pertussis toxin. When cells were kept at 42 degrees C for 48 hr and then shifted back to 37 degrees C to induce retrodifferentiation, LT synthesis rates declined within 8 hr and reached near control values within 36 hr. Retrodifferentiation also led to decreased LT synthesis in response to N-formylmethionylleucylphenylalanine, opsonized zymosan, and C5a. These results indicate that activation of the 5-lipoxygenase pathway is a very early event in the macrophage differentiation pathway that is directly or indirectly controlled by the temperature-sensitive v-myb protein.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2536937</pmid><doi>10.1073/pnas.86.3.921</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1989-02, Vol.86 (3), p.921-924
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_15195021
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Agonists
Animals
Arachidonic Acid
Arachidonic Acids - metabolism
avian leukosis virus
Avian Leukosis Virus - genetics
AVIAN ONCOVIRUS
Biological and medical sciences
Blood cells
Bone marrow
Cell Line
Cell Transformation, Neoplastic
CELLS
Cells, Cultured
Cellular differentiation
CELLULE
CELULAS
CHICKENS
Cycloheximide - pharmacology
Dactinomycin - pharmacology
FAGOCITOS
FONCTION PHYSIOLOGIQUE
FUNCION FISIOLOGICA
Fundamental and applied biological sciences. Psychology
Fundamental immunology
Immunobiology
Kinetics
Leukotriene B4 - biosynthesis
Leukotrienes
Macrophages
Macrophages - cytology
Macrophages - drug effects
Macrophages - metabolism
METABOLITE
METABOLITES
METABOLITOS
MUTANT
MUTANTES
MUTANTS
Mutation
Myeloid cells: ontogeny, maturation, markers, receptors
N-Formylmethionine Leucyl-Phenylalanine - pharmacology
Oncogenes
ONCOVIRUS AVIAIRE
ONCOVIRUS AVIAR
PHAGOCYTE
PHAGOCYTES
PHYSIOLOGICAL FUNCTIONS
POLLO
POULET
SRS-A - biosynthesis
TEMPERATURA
TEMPERATURE
Up regulation
Viruses
title Early reversible induction of leukotriene synthesis in chicken myelomonocytic cells transformed by a temperature-sensitive mutant of avian leukemia virus E26
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T03%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20reversible%20induction%20of%20leukotriene%20synthesis%20in%20chicken%20myelomonocytic%20cells%20transformed%20by%20a%20temperature-sensitive%20mutant%20of%20avian%20leukemia%20virus%20E26&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Habenicht,%20A.J.R&rft.date=1989-02-01&rft.volume=86&rft.issue=3&rft.spage=921&rft.epage=924&rft.pages=921-924&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.86.3.921&rft_dat=%3Cjstor_proqu%3E33312%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15195021&rft_id=info:pmid/2536937&rft_jstor_id=33312&rfr_iscdi=true