Early reversible induction of leukotriene synthesis in chicken myelomonocytic cells transformed by a temperature-sensitive mutant of avian leukemia virus E26
We used chicken myelomonocytic cells transformed by a temperature-sensitive mutant of the myb/ets oncogene-containing avian leukemia virus E26 to study the regulation of leukotriene (LT) synthesis during macrophage differentiation. Cells exposed to arachidonic acid and the Ca2+ ionophore 23187 produ...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1989-02, Vol.86 (3), p.921-924 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 924 |
---|---|
container_issue | 3 |
container_start_page | 921 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 86 |
creator | Habenicht, A.J.R Goerig, M Rothe, D.E.R Specht, E Ziegler, R Glomset, J.A Graf, T |
description | We used chicken myelomonocytic cells transformed by a temperature-sensitive mutant of the myb/ets oncogene-containing avian leukemia virus E26 to study the regulation of leukotriene (LT) synthesis during macrophage differentiation. Cells exposed to arachidonic acid and the Ca2+ ionophore 23187 produced up to 180 times more LTs at the nonpermissive temperature (42 degrees C) than at the permissive temperature (37 degrees C). Induction of LT synthesis was detectable within 2 hr after temperature shift, whereas conventional macrophage markers became evident after 2-3 days. N-Formylmethionylleucylphenylalanine, opsonized zymosan, and complement factor C5a induced LT synthesis in temperature-sensitive mutant-transformed cells only when the cells were maintained at 42 degrees C, and this effect was blocked by pertussis toxin. When cells were kept at 42 degrees C for 48 hr and then shifted back to 37 degrees C to induce retrodifferentiation, LT synthesis rates declined within 8 hr and reached near control values within 36 hr. Retrodifferentiation also led to decreased LT synthesis in response to N-formylmethionylleucylphenylalanine, opsonized zymosan, and C5a. These results indicate that activation of the 5-lipoxygenase pathway is a very early event in the macrophage differentiation pathway that is directly or indirectly controlled by the temperature-sensitive v-myb protein. |
doi_str_mv | 10.1073/pnas.86.3.921 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_15195021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>33312</jstor_id><sourcerecordid>33312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-1a343af530aa8f7bb4ad9cc043d7339b76c071dbb4424d83f734dbfc74b8d8963</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEKkvhyAWB5ANwy2LHSWwfekDV8iFV4gA9W44z7rp17MV2VuTH8F_JfrCUC5ws-X1m5p15i-I5wUuCGX238SotebukS1GRB8WCYEHKthb4YbHAuGIlr6v6cfEkpVuMsWg4PivOqoa2grJF8XOloptQhC3EZDsHyPp-1NkGj4JBDsa7kKMFDyhNPq8h2TQjSK-tvgOPhglcGIIPespWIw3OJZSj8smEOECPugkplGHYQFR5jFAm8MlmuwU0jFn5vBujtlb5_TAYrEJbG8eEVlX7tHhklEvw7PieF9cfVt8uP5VXXz5-vnx_VepGtLkkitZUmYZipbhhXVerXmiNa9ozSkXHWo0Z6ef_-RQ9p4bRuu-MZnXHey5ael5cHPpuxm42rcHPKzi5iXZQcZJBWfm34u1a3oStrHjbCDzXvz3Wx_B9hJTlYNPuFspDGJNknFPRNv8HSUNEgysyg-UB1DGkFMGczBAsd7nLXe6St5JKsedf3d_gRB-DnvXXR10lrZyZE9I2nTBGKtLsD_HyiO26_1bvTXnzD1ma0bkMP_LMvThwtymHeAIppaT6IxoVpLqJs43rr1zgitOK_gJNTOQm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15195021</pqid></control><display><type>article</type><title>Early reversible induction of leukotriene synthesis in chicken myelomonocytic cells transformed by a temperature-sensitive mutant of avian leukemia virus E26</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Habenicht, A.J.R ; Goerig, M ; Rothe, D.E.R ; Specht, E ; Ziegler, R ; Glomset, J.A ; Graf, T</creator><creatorcontrib>Habenicht, A.J.R ; Goerig, M ; Rothe, D.E.R ; Specht, E ; Ziegler, R ; Glomset, J.A ; Graf, T</creatorcontrib><description>We used chicken myelomonocytic cells transformed by a temperature-sensitive mutant of the myb/ets oncogene-containing avian leukemia virus E26 to study the regulation of leukotriene (LT) synthesis during macrophage differentiation. Cells exposed to arachidonic acid and the Ca2+ ionophore 23187 produced up to 180 times more LTs at the nonpermissive temperature (42 degrees C) than at the permissive temperature (37 degrees C). Induction of LT synthesis was detectable within 2 hr after temperature shift, whereas conventional macrophage markers became evident after 2-3 days. N-Formylmethionylleucylphenylalanine, opsonized zymosan, and complement factor C5a induced LT synthesis in temperature-sensitive mutant-transformed cells only when the cells were maintained at 42 degrees C, and this effect was blocked by pertussis toxin. When cells were kept at 42 degrees C for 48 hr and then shifted back to 37 degrees C to induce retrodifferentiation, LT synthesis rates declined within 8 hr and reached near control values within 36 hr. Retrodifferentiation also led to decreased LT synthesis in response to N-formylmethionylleucylphenylalanine, opsonized zymosan, and C5a. These results indicate that activation of the 5-lipoxygenase pathway is a very early event in the macrophage differentiation pathway that is directly or indirectly controlled by the temperature-sensitive v-myb protein.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.86.3.921</identifier><identifier>PMID: 2536937</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Agonists ; Animals ; Arachidonic Acid ; Arachidonic Acids - metabolism ; avian leukosis virus ; Avian Leukosis Virus - genetics ; AVIAN ONCOVIRUS ; Biological and medical sciences ; Blood cells ; Bone marrow ; Cell Line ; Cell Transformation, Neoplastic ; CELLS ; Cells, Cultured ; Cellular differentiation ; CELLULE ; CELULAS ; CHICKENS ; Cycloheximide - pharmacology ; Dactinomycin - pharmacology ; FAGOCITOS ; FONCTION PHYSIOLOGIQUE ; FUNCION FISIOLOGICA ; Fundamental and applied biological sciences. Psychology ; Fundamental immunology ; Immunobiology ; Kinetics ; Leukotriene B4 - biosynthesis ; Leukotrienes ; Macrophages ; Macrophages - cytology ; Macrophages - drug effects ; Macrophages - metabolism ; METABOLITE ; METABOLITES ; METABOLITOS ; MUTANT ; MUTANTES ; MUTANTS ; Mutation ; Myeloid cells: ontogeny, maturation, markers, receptors ; N-Formylmethionine Leucyl-Phenylalanine - pharmacology ; Oncogenes ; ONCOVIRUS AVIAIRE ; ONCOVIRUS AVIAR ; PHAGOCYTE ; PHAGOCYTES ; PHYSIOLOGICAL FUNCTIONS ; POLLO ; POULET ; SRS-A - biosynthesis ; TEMPERATURA ; TEMPERATURE ; Up regulation ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1989-02, Vol.86 (3), p.921-924</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-1a343af530aa8f7bb4ad9cc043d7339b76c071dbb4424d83f734dbfc74b8d8963</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/86/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/33312$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/33312$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27933,27934,53800,53802,58026,58259</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7121596$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2536937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Habenicht, A.J.R</creatorcontrib><creatorcontrib>Goerig, M</creatorcontrib><creatorcontrib>Rothe, D.E.R</creatorcontrib><creatorcontrib>Specht, E</creatorcontrib><creatorcontrib>Ziegler, R</creatorcontrib><creatorcontrib>Glomset, J.A</creatorcontrib><creatorcontrib>Graf, T</creatorcontrib><title>Early reversible induction of leukotriene synthesis in chicken myelomonocytic cells transformed by a temperature-sensitive mutant of avian leukemia virus E26</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We used chicken myelomonocytic cells transformed by a temperature-sensitive mutant of the myb/ets oncogene-containing avian leukemia virus E26 to study the regulation of leukotriene (LT) synthesis during macrophage differentiation. Cells exposed to arachidonic acid and the Ca2+ ionophore 23187 produced up to 180 times more LTs at the nonpermissive temperature (42 degrees C) than at the permissive temperature (37 degrees C). Induction of LT synthesis was detectable within 2 hr after temperature shift, whereas conventional macrophage markers became evident after 2-3 days. N-Formylmethionylleucylphenylalanine, opsonized zymosan, and complement factor C5a induced LT synthesis in temperature-sensitive mutant-transformed cells only when the cells were maintained at 42 degrees C, and this effect was blocked by pertussis toxin. When cells were kept at 42 degrees C for 48 hr and then shifted back to 37 degrees C to induce retrodifferentiation, LT synthesis rates declined within 8 hr and reached near control values within 36 hr. Retrodifferentiation also led to decreased LT synthesis in response to N-formylmethionylleucylphenylalanine, opsonized zymosan, and C5a. These results indicate that activation of the 5-lipoxygenase pathway is a very early event in the macrophage differentiation pathway that is directly or indirectly controlled by the temperature-sensitive v-myb protein.</description><subject>Agonists</subject><subject>Animals</subject><subject>Arachidonic Acid</subject><subject>Arachidonic Acids - metabolism</subject><subject>avian leukosis virus</subject><subject>Avian Leukosis Virus - genetics</subject><subject>AVIAN ONCOVIRUS</subject><subject>Biological and medical sciences</subject><subject>Blood cells</subject><subject>Bone marrow</subject><subject>Cell Line</subject><subject>Cell Transformation, Neoplastic</subject><subject>CELLS</subject><subject>Cells, Cultured</subject><subject>Cellular differentiation</subject><subject>CELLULE</subject><subject>CELULAS</subject><subject>CHICKENS</subject><subject>Cycloheximide - pharmacology</subject><subject>Dactinomycin - pharmacology</subject><subject>FAGOCITOS</subject><subject>FONCTION PHYSIOLOGIQUE</subject><subject>FUNCION FISIOLOGICA</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental immunology</subject><subject>Immunobiology</subject><subject>Kinetics</subject><subject>Leukotriene B4 - biosynthesis</subject><subject>Leukotrienes</subject><subject>Macrophages</subject><subject>Macrophages - cytology</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>METABOLITE</subject><subject>METABOLITES</subject><subject>METABOLITOS</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>Myeloid cells: ontogeny, maturation, markers, receptors</subject><subject>N-Formylmethionine Leucyl-Phenylalanine - pharmacology</subject><subject>Oncogenes</subject><subject>ONCOVIRUS AVIAIRE</subject><subject>ONCOVIRUS AVIAR</subject><subject>PHAGOCYTE</subject><subject>PHAGOCYTES</subject><subject>PHYSIOLOGICAL FUNCTIONS</subject><subject>POLLO</subject><subject>POULET</subject><subject>SRS-A - biosynthesis</subject><subject>TEMPERATURA</subject><subject>TEMPERATURE</subject><subject>Up regulation</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEKkvhyAWB5ANwy2LHSWwfekDV8iFV4gA9W44z7rp17MV2VuTH8F_JfrCUC5ws-X1m5p15i-I5wUuCGX238SotebukS1GRB8WCYEHKthb4YbHAuGIlr6v6cfEkpVuMsWg4PivOqoa2grJF8XOloptQhC3EZDsHyPp-1NkGj4JBDsa7kKMFDyhNPq8h2TQjSK-tvgOPhglcGIIPespWIw3OJZSj8smEOECPugkplGHYQFR5jFAm8MlmuwU0jFn5vBujtlb5_TAYrEJbG8eEVlX7tHhklEvw7PieF9cfVt8uP5VXXz5-vnx_VepGtLkkitZUmYZipbhhXVerXmiNa9ozSkXHWo0Z6ef_-RQ9p4bRuu-MZnXHey5ael5cHPpuxm42rcHPKzi5iXZQcZJBWfm34u1a3oStrHjbCDzXvz3Wx_B9hJTlYNPuFspDGJNknFPRNv8HSUNEgysyg-UB1DGkFMGczBAsd7nLXe6St5JKsedf3d_gRB-DnvXXR10lrZyZE9I2nTBGKtLsD_HyiO26_1bvTXnzD1ma0bkMP_LMvThwtymHeAIppaT6IxoVpLqJs43rr1zgitOK_gJNTOQm</recordid><startdate>19890201</startdate><enddate>19890201</enddate><creator>Habenicht, A.J.R</creator><creator>Goerig, M</creator><creator>Rothe, D.E.R</creator><creator>Specht, E</creator><creator>Ziegler, R</creator><creator>Glomset, J.A</creator><creator>Graf, T</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19890201</creationdate><title>Early reversible induction of leukotriene synthesis in chicken myelomonocytic cells transformed by a temperature-sensitive mutant of avian leukemia virus E26</title><author>Habenicht, A.J.R ; Goerig, M ; Rothe, D.E.R ; Specht, E ; Ziegler, R ; Glomset, J.A ; Graf, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-1a343af530aa8f7bb4ad9cc043d7339b76c071dbb4424d83f734dbfc74b8d8963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Agonists</topic><topic>Animals</topic><topic>Arachidonic Acid</topic><topic>Arachidonic Acids - metabolism</topic><topic>avian leukosis virus</topic><topic>Avian Leukosis Virus - genetics</topic><topic>AVIAN ONCOVIRUS</topic><topic>Biological and medical sciences</topic><topic>Blood cells</topic><topic>Bone marrow</topic><topic>Cell Line</topic><topic>Cell Transformation, Neoplastic</topic><topic>CELLS</topic><topic>Cells, Cultured</topic><topic>Cellular differentiation</topic><topic>CELLULE</topic><topic>CELULAS</topic><topic>CHICKENS</topic><topic>Cycloheximide - pharmacology</topic><topic>Dactinomycin - pharmacology</topic><topic>FAGOCITOS</topic><topic>FONCTION PHYSIOLOGIQUE</topic><topic>FUNCION FISIOLOGICA</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental immunology</topic><topic>Immunobiology</topic><topic>Kinetics</topic><topic>Leukotriene B4 - biosynthesis</topic><topic>Leukotrienes</topic><topic>Macrophages</topic><topic>Macrophages - cytology</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>METABOLITE</topic><topic>METABOLITES</topic><topic>METABOLITOS</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>Myeloid cells: ontogeny, maturation, markers, receptors</topic><topic>N-Formylmethionine Leucyl-Phenylalanine - pharmacology</topic><topic>Oncogenes</topic><topic>ONCOVIRUS AVIAIRE</topic><topic>ONCOVIRUS AVIAR</topic><topic>PHAGOCYTE</topic><topic>PHAGOCYTES</topic><topic>PHYSIOLOGICAL FUNCTIONS</topic><topic>POLLO</topic><topic>POULET</topic><topic>SRS-A - biosynthesis</topic><topic>TEMPERATURA</topic><topic>TEMPERATURE</topic><topic>Up regulation</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habenicht, A.J.R</creatorcontrib><creatorcontrib>Goerig, M</creatorcontrib><creatorcontrib>Rothe, D.E.R</creatorcontrib><creatorcontrib>Specht, E</creatorcontrib><creatorcontrib>Ziegler, R</creatorcontrib><creatorcontrib>Glomset, J.A</creatorcontrib><creatorcontrib>Graf, T</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habenicht, A.J.R</au><au>Goerig, M</au><au>Rothe, D.E.R</au><au>Specht, E</au><au>Ziegler, R</au><au>Glomset, J.A</au><au>Graf, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early reversible induction of leukotriene synthesis in chicken myelomonocytic cells transformed by a temperature-sensitive mutant of avian leukemia virus E26</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1989-02-01</date><risdate>1989</risdate><volume>86</volume><issue>3</issue><spage>921</spage><epage>924</epage><pages>921-924</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>We used chicken myelomonocytic cells transformed by a temperature-sensitive mutant of the myb/ets oncogene-containing avian leukemia virus E26 to study the regulation of leukotriene (LT) synthesis during macrophage differentiation. Cells exposed to arachidonic acid and the Ca2+ ionophore 23187 produced up to 180 times more LTs at the nonpermissive temperature (42 degrees C) than at the permissive temperature (37 degrees C). Induction of LT synthesis was detectable within 2 hr after temperature shift, whereas conventional macrophage markers became evident after 2-3 days. N-Formylmethionylleucylphenylalanine, opsonized zymosan, and complement factor C5a induced LT synthesis in temperature-sensitive mutant-transformed cells only when the cells were maintained at 42 degrees C, and this effect was blocked by pertussis toxin. When cells were kept at 42 degrees C for 48 hr and then shifted back to 37 degrees C to induce retrodifferentiation, LT synthesis rates declined within 8 hr and reached near control values within 36 hr. Retrodifferentiation also led to decreased LT synthesis in response to N-formylmethionylleucylphenylalanine, opsonized zymosan, and C5a. These results indicate that activation of the 5-lipoxygenase pathway is a very early event in the macrophage differentiation pathway that is directly or indirectly controlled by the temperature-sensitive v-myb protein.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2536937</pmid><doi>10.1073/pnas.86.3.921</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1989-02, Vol.86 (3), p.921-924 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_15195021 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Agonists Animals Arachidonic Acid Arachidonic Acids - metabolism avian leukosis virus Avian Leukosis Virus - genetics AVIAN ONCOVIRUS Biological and medical sciences Blood cells Bone marrow Cell Line Cell Transformation, Neoplastic CELLS Cells, Cultured Cellular differentiation CELLULE CELULAS CHICKENS Cycloheximide - pharmacology Dactinomycin - pharmacology FAGOCITOS FONCTION PHYSIOLOGIQUE FUNCION FISIOLOGICA Fundamental and applied biological sciences. Psychology Fundamental immunology Immunobiology Kinetics Leukotriene B4 - biosynthesis Leukotrienes Macrophages Macrophages - cytology Macrophages - drug effects Macrophages - metabolism METABOLITE METABOLITES METABOLITOS MUTANT MUTANTES MUTANTS Mutation Myeloid cells: ontogeny, maturation, markers, receptors N-Formylmethionine Leucyl-Phenylalanine - pharmacology Oncogenes ONCOVIRUS AVIAIRE ONCOVIRUS AVIAR PHAGOCYTE PHAGOCYTES PHYSIOLOGICAL FUNCTIONS POLLO POULET SRS-A - biosynthesis TEMPERATURA TEMPERATURE Up regulation Viruses |
title | Early reversible induction of leukotriene synthesis in chicken myelomonocytic cells transformed by a temperature-sensitive mutant of avian leukemia virus E26 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T03%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20reversible%20induction%20of%20leukotriene%20synthesis%20in%20chicken%20myelomonocytic%20cells%20transformed%20by%20a%20temperature-sensitive%20mutant%20of%20avian%20leukemia%20virus%20E26&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Habenicht,%20A.J.R&rft.date=1989-02-01&rft.volume=86&rft.issue=3&rft.spage=921&rft.epage=924&rft.pages=921-924&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.86.3.921&rft_dat=%3Cjstor_proqu%3E33312%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15195021&rft_id=info:pmid/2536937&rft_jstor_id=33312&rfr_iscdi=true |