Spatially and temporally reconfigurable assembly of colloidal crystals
The self-assembly of colloidal crystals is important to the production of materials with functional optical, mechanical and conductive properties. Yet, self-assembly methods are limited by their slow kinetics and lack of structural control in space and time. Refinements such as templating and direct...
Gespeichert in:
Veröffentlicht in: | Nature communications 2014-04, Vol.5 (1), p.3676-3676, Article 3676 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3676 |
---|---|
container_issue | 1 |
container_start_page | 3676 |
container_title | Nature communications |
container_volume | 5 |
creator | Kim, Youngri Shah, Aayush A. Solomon, Michael J. |
description | The self-assembly of colloidal crystals is important to the production of materials with functional optical, mechanical and conductive properties. Yet, self-assembly methods are limited by their slow kinetics and lack of structural control in space and time. Refinements such as templating and directed assembly partially address the problem, albeit by introducing fixed surface features such as templates or electrodes. A template-free method to reconfigure colloidal crystals simultaneously in three-dimensional space and time would better align work in colloidal assembly with materials applications. Here, we report a photo-induced assembly method that yields regions either filled with colloidal crystals or completely devoid of colloids. The origin of the effect is found to be electrophoresis of colloids generated by photochemistry at an indium tin oxide-coated substrate. Simple optical manipulations are applied to reconfigure these assembly and depletion regions. Thus, the method represents a new kind of template-free, reconfigurable three-dimensional photolithography.
Controlling colloidal assemblies without the need of a template or electrode is still a challenging goal. Here Kim
et al.
use photo-induced ion flow in an indium tin oxide-coated substrate to control this process, allowing reversible assembly of colloidal crystals in a three-dimensional manner. |
doi_str_mv | 10.1038/ncomms4676 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1519258580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3282832591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-7676670477af8a3cccda1a2b126095e79760eab9ebc54655a2003b664739ae793</originalsourceid><addsrcrecordid>eNplkE9LxDAQxYMo7rLuxQ8gBS-iVJM2f5qjLK4KCx7Uc5mm6dIlbWrSHvbbm7WrLjqXmWR-vHk8hM4JviU4ze5aZZvGUy74EZommJKYiCQ9PpgnaO79BodKJckoPUWThAomGZVTtHztoK_BmG0EbRn1uums-3o6rWxb1evBQWF0BN7rpgj_toqUNcbWJZhIua3vwfgzdFKFpuf7PkPvy4e3xVO8enl8XtyvYkVZ2sci2OQCUyGgyiBVSpVAIClIwrFkWkjBsYZC6kIxyhmDJJguOKcilRDW6Qxdjbqdsx-D9n3e1F5pY6DVdvA5YUQmLGMZDujlH3RjB9cGdzsqY1hwmQXqeqSUs947XeWdqxtw25zgfBdw_htwgC_2kkPR6PIH_Y4zADcj4MOqXWt3cPO_3CfI9YUX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518507698</pqid></control><display><type>article</type><title>Spatially and temporally reconfigurable assembly of colloidal crystals</title><source>Springer Nature OA Free Journals</source><creator>Kim, Youngri ; Shah, Aayush A. ; Solomon, Michael J.</creator><creatorcontrib>Kim, Youngri ; Shah, Aayush A. ; Solomon, Michael J.</creatorcontrib><description>The self-assembly of colloidal crystals is important to the production of materials with functional optical, mechanical and conductive properties. Yet, self-assembly methods are limited by their slow kinetics and lack of structural control in space and time. Refinements such as templating and directed assembly partially address the problem, albeit by introducing fixed surface features such as templates or electrodes. A template-free method to reconfigure colloidal crystals simultaneously in three-dimensional space and time would better align work in colloidal assembly with materials applications. Here, we report a photo-induced assembly method that yields regions either filled with colloidal crystals or completely devoid of colloids. The origin of the effect is found to be electrophoresis of colloids generated by photochemistry at an indium tin oxide-coated substrate. Simple optical manipulations are applied to reconfigure these assembly and depletion regions. Thus, the method represents a new kind of template-free, reconfigurable three-dimensional photolithography.
Controlling colloidal assemblies without the need of a template or electrode is still a challenging goal. Here Kim
et al.
use photo-induced ion flow in an indium tin oxide-coated substrate to control this process, allowing reversible assembly of colloidal crystals in a three-dimensional manner.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms4676</identifier><identifier>PMID: 24759549</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/930 ; 639/638/298/923/916 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2014-04, Vol.5 (1), p.3676-3676, Article 3676</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Apr 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-7676670477af8a3cccda1a2b126095e79760eab9ebc54655a2003b664739ae793</citedby><cites>FETCH-LOGICAL-c453t-7676670477af8a3cccda1a2b126095e79760eab9ebc54655a2003b664739ae793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms4676$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms4676$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41101,42170,51557</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms4676$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24759549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Youngri</creatorcontrib><creatorcontrib>Shah, Aayush A.</creatorcontrib><creatorcontrib>Solomon, Michael J.</creatorcontrib><title>Spatially and temporally reconfigurable assembly of colloidal crystals</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The self-assembly of colloidal crystals is important to the production of materials with functional optical, mechanical and conductive properties. Yet, self-assembly methods are limited by their slow kinetics and lack of structural control in space and time. Refinements such as templating and directed assembly partially address the problem, albeit by introducing fixed surface features such as templates or electrodes. A template-free method to reconfigure colloidal crystals simultaneously in three-dimensional space and time would better align work in colloidal assembly with materials applications. Here, we report a photo-induced assembly method that yields regions either filled with colloidal crystals or completely devoid of colloids. The origin of the effect is found to be electrophoresis of colloids generated by photochemistry at an indium tin oxide-coated substrate. Simple optical manipulations are applied to reconfigure these assembly and depletion regions. Thus, the method represents a new kind of template-free, reconfigurable three-dimensional photolithography.
Controlling colloidal assemblies without the need of a template or electrode is still a challenging goal. Here Kim
et al.
use photo-induced ion flow in an indium tin oxide-coated substrate to control this process, allowing reversible assembly of colloidal crystals in a three-dimensional manner.</description><subject>639/301/930</subject><subject>639/638/298/923/916</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkE9LxDAQxYMo7rLuxQ8gBS-iVJM2f5qjLK4KCx7Uc5mm6dIlbWrSHvbbm7WrLjqXmWR-vHk8hM4JviU4ze5aZZvGUy74EZommJKYiCQ9PpgnaO79BodKJckoPUWThAomGZVTtHztoK_BmG0EbRn1uums-3o6rWxb1evBQWF0BN7rpgj_toqUNcbWJZhIua3vwfgzdFKFpuf7PkPvy4e3xVO8enl8XtyvYkVZ2sci2OQCUyGgyiBVSpVAIClIwrFkWkjBsYZC6kIxyhmDJJguOKcilRDW6Qxdjbqdsx-D9n3e1F5pY6DVdvA5YUQmLGMZDujlH3RjB9cGdzsqY1hwmQXqeqSUs947XeWdqxtw25zgfBdw_htwgC_2kkPR6PIH_Y4zADcj4MOqXWt3cPO_3CfI9YUX</recordid><startdate>20140423</startdate><enddate>20140423</enddate><creator>Kim, Youngri</creator><creator>Shah, Aayush A.</creator><creator>Solomon, Michael J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20140423</creationdate><title>Spatially and temporally reconfigurable assembly of colloidal crystals</title><author>Kim, Youngri ; Shah, Aayush A. ; Solomon, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-7676670477af8a3cccda1a2b126095e79760eab9ebc54655a2003b664739ae793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/930</topic><topic>639/638/298/923/916</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Youngri</creatorcontrib><creatorcontrib>Shah, Aayush A.</creatorcontrib><creatorcontrib>Solomon, Michael J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Youngri</au><au>Shah, Aayush A.</au><au>Solomon, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially and temporally reconfigurable assembly of colloidal crystals</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2014-04-23</date><risdate>2014</risdate><volume>5</volume><issue>1</issue><spage>3676</spage><epage>3676</epage><pages>3676-3676</pages><artnum>3676</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The self-assembly of colloidal crystals is important to the production of materials with functional optical, mechanical and conductive properties. Yet, self-assembly methods are limited by their slow kinetics and lack of structural control in space and time. Refinements such as templating and directed assembly partially address the problem, albeit by introducing fixed surface features such as templates or electrodes. A template-free method to reconfigure colloidal crystals simultaneously in three-dimensional space and time would better align work in colloidal assembly with materials applications. Here, we report a photo-induced assembly method that yields regions either filled with colloidal crystals or completely devoid of colloids. The origin of the effect is found to be electrophoresis of colloids generated by photochemistry at an indium tin oxide-coated substrate. Simple optical manipulations are applied to reconfigure these assembly and depletion regions. Thus, the method represents a new kind of template-free, reconfigurable three-dimensional photolithography.
Controlling colloidal assemblies without the need of a template or electrode is still a challenging goal. Here Kim
et al.
use photo-induced ion flow in an indium tin oxide-coated substrate to control this process, allowing reversible assembly of colloidal crystals in a three-dimensional manner.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24759549</pmid><doi>10.1038/ncomms4676</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2014-04, Vol.5 (1), p.3676-3676, Article 3676 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_miscellaneous_1519258580 |
source | Springer Nature OA Free Journals |
subjects | 639/301/930 639/638/298/923/916 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
title | Spatially and temporally reconfigurable assembly of colloidal crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20and%20temporally%20reconfigurable%20assembly%20of%20colloidal%20crystals&rft.jtitle=Nature%20communications&rft.au=Kim,%20Youngri&rft.date=2014-04-23&rft.volume=5&rft.issue=1&rft.spage=3676&rft.epage=3676&rft.pages=3676-3676&rft.artnum=3676&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms4676&rft_dat=%3Cproquest_C6C%3E3282832591%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518507698&rft_id=info:pmid/24759549&rfr_iscdi=true |