Classical and causal inference approaches to statistical mediation analysis

Although there is a broad consensus on the use of statistical procedures for mediation analysis in psychological research, the interpretation of the effect of mediation is highly controversial because of the potential violation of the assumptions required in application, most of which are ignored in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psicothema 2014-05, Vol.26 (2), p.252-259
Hauptverfasser: Ato García, Manuel, Vallejo Seco, Guillermo, Ato Lozano, Ester
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue 2
container_start_page 252
container_title Psicothema
container_volume 26
creator Ato García, Manuel
Vallejo Seco, Guillermo
Ato Lozano, Ester
description Although there is a broad consensus on the use of statistical procedures for mediation analysis in psychological research, the interpretation of the effect of mediation is highly controversial because of the potential violation of the assumptions required in application, most of which are ignored in practice. This paper summarises two currently independent procedures for mediation analysis, the classical/SEM and causal inference/CI approaches, together with the statistical assumptions required to estimate unbiased mediation effects, in particular the existence of omitted variables or confounders. A simulation study was run to test whether violating the assumptions changes the estimation of mediating effects. The simulation study showed a significant overestimation of mediation effects with latent confounders. We recommend expanding the classical with the causal inference approach, which generalises the results of the first approach to mediation using a common estimation method and incorporates new tools to evaluate the statistical assumptions. To achieve this goal, we compare the distinguishing features of recently developed software programs in R, SAS, SPSS, STATA and Mplus.
doi_str_mv 10.7334/psicothema2013.314
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1518815349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1518815349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-183d55f31c5506df64d36471b48cd4c0a25b81d8a7245cfdde9cdda50875eef33</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMotlb_gAsZcONmam4ek8xSii8suFFwF9IkQ6fMy7kzi_57U1sFXeUGvnM4fIRcAp0rzsVth6Vrh3WoLaPA5xzEEZmC1lkKQnwckyllINI8BzkhZ4gbSmXGFTslEyaUlJTpKXlZVBZjj60S2_jE2RHjWTZF6EPjQmK7rm-tWwdMhjbBwQ4lDt94HXwZf20Tg7baYonn5KSwFYaLwzsj7w_3b4undPn6-Ly4W6aOZTCkoLmXsuDg4obMF5nwPBMKVkI7Lxy1TK40eG0VE9IV3ofceW8l1UqGUHA-Izf73jjtcww4mLpEF6rKNqEd0YCMEkBykUf0-h-6acc-7kXDlNKcgdI7iu0p17eIfShM15e17bcGqNmpNn9Vm6g6hq4O1eMquviN_LjlXy1GfSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778321789</pqid></control><display><type>article</type><title>Classical and causal inference approaches to statistical mediation analysis</title><source>Research Library</source><source>MEDLINE</source><source>Research Library (Alumni Edition)</source><source>DOAJ Directory of Open Access Journals</source><source>Research Library Prep</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central</source><creator>Ato García, Manuel ; Vallejo Seco, Guillermo ; Ato Lozano, Ester</creator><creatorcontrib>Ato García, Manuel ; Vallejo Seco, Guillermo ; Ato Lozano, Ester</creatorcontrib><description>Although there is a broad consensus on the use of statistical procedures for mediation analysis in psychological research, the interpretation of the effect of mediation is highly controversial because of the potential violation of the assumptions required in application, most of which are ignored in practice. This paper summarises two currently independent procedures for mediation analysis, the classical/SEM and causal inference/CI approaches, together with the statistical assumptions required to estimate unbiased mediation effects, in particular the existence of omitted variables or confounders. A simulation study was run to test whether violating the assumptions changes the estimation of mediating effects. The simulation study showed a significant overestimation of mediation effects with latent confounders. We recommend expanding the classical with the causal inference approach, which generalises the results of the first approach to mediation using a common estimation method and incorporates new tools to evaluate the statistical assumptions. To achieve this goal, we compare the distinguishing features of recently developed software programs in R, SAS, SPSS, STATA and Mplus.</description><identifier>ISSN: 0214-9915</identifier><identifier>EISSN: 1886-144X</identifier><identifier>DOI: 10.7334/psicothema2013.314</identifier><identifier>PMID: 24755028</identifier><language>eng</language><publisher>Spain: Colegio Oficial de Psicólogos (PSICODOC)</publisher><subject>Causality ; Computer Simulation ; Confounding Factors (Epidemiology) ; Models, Statistical ; Regression Analysis ; Software</subject><ispartof>Psicothema, 2014-05, Vol.26 (2), p.252-259</ispartof><rights>2014. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.psicothema.com/PublicationNorms2022.pdf</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-183d55f31c5506df64d36471b48cd4c0a25b81d8a7245cfdde9cdda50875eef33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2778321789/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2778321789?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,12724,12753,21367,21371,27901,27902,33429,33430,33721,33722,34311,34312,36242,36243,43592,43781,44049,44380,73794,74045,74339,74679</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24755028$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ato García, Manuel</creatorcontrib><creatorcontrib>Vallejo Seco, Guillermo</creatorcontrib><creatorcontrib>Ato Lozano, Ester</creatorcontrib><title>Classical and causal inference approaches to statistical mediation analysis</title><title>Psicothema</title><addtitle>Psicothema</addtitle><description>Although there is a broad consensus on the use of statistical procedures for mediation analysis in psychological research, the interpretation of the effect of mediation is highly controversial because of the potential violation of the assumptions required in application, most of which are ignored in practice. This paper summarises two currently independent procedures for mediation analysis, the classical/SEM and causal inference/CI approaches, together with the statistical assumptions required to estimate unbiased mediation effects, in particular the existence of omitted variables or confounders. A simulation study was run to test whether violating the assumptions changes the estimation of mediating effects. The simulation study showed a significant overestimation of mediation effects with latent confounders. We recommend expanding the classical with the causal inference approach, which generalises the results of the first approach to mediation using a common estimation method and incorporates new tools to evaluate the statistical assumptions. To achieve this goal, we compare the distinguishing features of recently developed software programs in R, SAS, SPSS, STATA and Mplus.</description><subject>Causality</subject><subject>Computer Simulation</subject><subject>Confounding Factors (Epidemiology)</subject><subject>Models, Statistical</subject><subject>Regression Analysis</subject><subject>Software</subject><issn>0214-9915</issn><issn>1886-144X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtLAzEUhYMotlb_gAsZcONmam4ek8xSii8suFFwF9IkQ6fMy7kzi_57U1sFXeUGvnM4fIRcAp0rzsVth6Vrh3WoLaPA5xzEEZmC1lkKQnwckyllINI8BzkhZ4gbSmXGFTslEyaUlJTpKXlZVBZjj60S2_jE2RHjWTZF6EPjQmK7rm-tWwdMhjbBwQ4lDt94HXwZf20Tg7baYonn5KSwFYaLwzsj7w_3b4undPn6-Ly4W6aOZTCkoLmXsuDg4obMF5nwPBMKVkI7Lxy1TK40eG0VE9IV3ofceW8l1UqGUHA-Izf73jjtcww4mLpEF6rKNqEd0YCMEkBykUf0-h-6acc-7kXDlNKcgdI7iu0p17eIfShM15e17bcGqNmpNn9Vm6g6hq4O1eMquviN_LjlXy1GfSk</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Ato García, Manuel</creator><creator>Vallejo Seco, Guillermo</creator><creator>Ato Lozano, Ester</creator><general>Colegio Oficial de Psicólogos (PSICODOC)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88G</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20140501</creationdate><title>Classical and causal inference approaches to statistical mediation analysis</title><author>Ato García, Manuel ; Vallejo Seco, Guillermo ; Ato Lozano, Ester</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-183d55f31c5506df64d36471b48cd4c0a25b81d8a7245cfdde9cdda50875eef33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Causality</topic><topic>Computer Simulation</topic><topic>Confounding Factors (Epidemiology)</topic><topic>Models, Statistical</topic><topic>Regression Analysis</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ato García, Manuel</creatorcontrib><creatorcontrib>Vallejo Seco, Guillermo</creatorcontrib><creatorcontrib>Ato Lozano, Ester</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Psicothema</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ato García, Manuel</au><au>Vallejo Seco, Guillermo</au><au>Ato Lozano, Ester</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical and causal inference approaches to statistical mediation analysis</atitle><jtitle>Psicothema</jtitle><addtitle>Psicothema</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>26</volume><issue>2</issue><spage>252</spage><epage>259</epage><pages>252-259</pages><issn>0214-9915</issn><eissn>1886-144X</eissn><abstract>Although there is a broad consensus on the use of statistical procedures for mediation analysis in psychological research, the interpretation of the effect of mediation is highly controversial because of the potential violation of the assumptions required in application, most of which are ignored in practice. This paper summarises two currently independent procedures for mediation analysis, the classical/SEM and causal inference/CI approaches, together with the statistical assumptions required to estimate unbiased mediation effects, in particular the existence of omitted variables or confounders. A simulation study was run to test whether violating the assumptions changes the estimation of mediating effects. The simulation study showed a significant overestimation of mediation effects with latent confounders. We recommend expanding the classical with the causal inference approach, which generalises the results of the first approach to mediation using a common estimation method and incorporates new tools to evaluate the statistical assumptions. To achieve this goal, we compare the distinguishing features of recently developed software programs in R, SAS, SPSS, STATA and Mplus.</abstract><cop>Spain</cop><pub>Colegio Oficial de Psicólogos (PSICODOC)</pub><pmid>24755028</pmid><doi>10.7334/psicothema2013.314</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0214-9915
ispartof Psicothema, 2014-05, Vol.26 (2), p.252-259
issn 0214-9915
1886-144X
language eng
recordid cdi_proquest_miscellaneous_1518815349
source Research Library; MEDLINE; Research Library (Alumni Edition); DOAJ Directory of Open Access Journals; Research Library Prep; EZB-FREE-00999 freely available EZB journals; ProQuest Central
subjects Causality
Computer Simulation
Confounding Factors (Epidemiology)
Models, Statistical
Regression Analysis
Software
title Classical and causal inference approaches to statistical mediation analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A24%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20and%20causal%20inference%20approaches%20to%20statistical%20mediation%20analysis&rft.jtitle=Psicothema&rft.au=Ato%20Garc%C3%ADa,%20Manuel&rft.date=2014-05-01&rft.volume=26&rft.issue=2&rft.spage=252&rft.epage=259&rft.pages=252-259&rft.issn=0214-9915&rft.eissn=1886-144X&rft_id=info:doi/10.7334/psicothema2013.314&rft_dat=%3Cproquest_cross%3E1518815349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778321789&rft_id=info:pmid/24755028&rfr_iscdi=true