Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA
Outer membrane β-barrel proteins (OMPs) are crucial for numerous cellular processes in prokaryotes and eukaryotes. Despite extensive studies on OMP biogenesis, it is unclear why OMPs require assembly machineries to fold into their native outer membranes, as they are capable of folding quickly and ef...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2014-04, Vol.111 (16), p.5878-5883 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5883 |
---|---|
container_issue | 16 |
container_start_page | 5878 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Gessmann, Dennis Chung, Yong Hee Danoff, Emily J. Plummer, Ashlee M. Sandlin, Clifford W. Zaccai, Nathan R. Fleming, Karen G. |
description | Outer membrane β-barrel proteins (OMPs) are crucial for numerous cellular processes in prokaryotes and eukaryotes. Despite extensive studies on OMP biogenesis, it is unclear why OMPs require assembly machineries to fold into their native outer membranes, as they are capable of folding quickly and efficiently through an intrinsic folding pathway in vitro. By investigating the folding of several bacterial OMPs using membranes with naturally occurring Escherichia coli lipids, we show that phosphoethanolamine and phosphoglycerol head groups impose a kinetic barrier to OMP folding. The kinetic retardation of OMP folding places a strong negative pressure against spontaneous incorporation of OMPs into inner bacterial membranes, which would dissipate the proton motive force and undoubtedly kill bacteria. We further show that prefolded β-barrel assembly machinery subunit A (BamA), the evolutionarily conserved, central subunit of the BAM complex, accelerates OMP folding by lowering the kinetic barrier imposed by phosphoethanolamine head groups. Our results suggest that OMP assembly machineries are required in vivo to enable physical control over the spontaneously occurring OMP folding reaction in the periplasm. Mechanistic studies further allowed us to derive a model for BamA function, which explains how OMP assembly can be conserved between prokaryotes and eukaryotes. |
doi_str_mv | 10.1073/pnas.1322473111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1518813457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23771471</jstor_id><sourcerecordid>23771471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-6ed5c97f4d75d592ea40dfc768c382a507d2cfd81cdc06f535f4df4f13a2732e3</originalsourceid><addsrcrecordid>eNqFkc1uEzEURi0EomlgzQrwsptpfcf22LNBKhV_UqUuoGvLsT2Ji2c82DOV8lo8CM-Eo4QEVqy88LlH934fQq-AXAIR9GocdL4EWtdMUAB4ghZAWqga1pKnaEFILSrJanaGznN-IIS0XJLn6KzgwMvEAn2_myeXcO_6VdKDw79-Viudkgt4THFyfsBdDNYPa-wzHjfb7I0OYYtNHKYUQ3AWr7Z4dMmPQefeGxz86C3eOG3xOsV5zFgPFr_X_fUL9KzTIbuXh3eJ7j9--Hbzubq9-_Tl5vq2MqxtpqpxlptWdMwKbnlbO82I7YxopKGy1pwIW5vOSjDWkKbjlBe0Yx1QXQtaO7pE7_becV71zhpXVtVBjcn3Om1V1F79-zP4jVrHR8VKQpKzIrg4CFL8Mbs8qd5n40IoCcU5K5CEAuUg2v-jHKQEykraS3S1R02KOSfXHTcConZtql2b6tRmmXjz9yFH_k99BXh7AHaTRx2AgkZxKWQhXu-JhzzFdDJQIaBYToZOR6XXyWd1_7Um0BACjIly4W-XNbtP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518813457</pqid></control><display><type>article</type><title>Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA</title><source>JSTOR Archive Collection A-Z Listing</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gessmann, Dennis ; Chung, Yong Hee ; Danoff, Emily J. ; Plummer, Ashlee M. ; Sandlin, Clifford W. ; Zaccai, Nathan R. ; Fleming, Karen G.</creator><creatorcontrib>Gessmann, Dennis ; Chung, Yong Hee ; Danoff, Emily J. ; Plummer, Ashlee M. ; Sandlin, Clifford W. ; Zaccai, Nathan R. ; Fleming, Karen G.</creatorcontrib><description>Outer membrane β-barrel proteins (OMPs) are crucial for numerous cellular processes in prokaryotes and eukaryotes. Despite extensive studies on OMP biogenesis, it is unclear why OMPs require assembly machineries to fold into their native outer membranes, as they are capable of folding quickly and efficiently through an intrinsic folding pathway in vitro. By investigating the folding of several bacterial OMPs using membranes with naturally occurring Escherichia coli lipids, we show that phosphoethanolamine and phosphoglycerol head groups impose a kinetic barrier to OMP folding. The kinetic retardation of OMP folding places a strong negative pressure against spontaneous incorporation of OMPs into inner bacterial membranes, which would dissipate the proton motive force and undoubtedly kill bacteria. We further show that prefolded β-barrel assembly machinery subunit A (BamA), the evolutionarily conserved, central subunit of the BAM complex, accelerates OMP folding by lowering the kinetic barrier imposed by phosphoethanolamine head groups. Our results suggest that OMP assembly machineries are required in vivo to enable physical control over the spontaneously occurring OMP folding reaction in the periplasm. Mechanistic studies further allowed us to derive a model for BamA function, which explains how OMP assembly can be conserved between prokaryotes and eukaryotes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1322473111</identifier><identifier>PMID: 24715731</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>bacteria ; Bacterial Outer Membrane Proteins - chemistry ; Bacterial Outer Membrane Proteins - metabolism ; Biocatalysis ; Biochemistry ; biogenesis ; Biological Sciences ; Cell Membrane - metabolism ; Cell membranes ; Escherichia coli ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; eukaryotic cells ; Kinetics ; Lipids ; Lipids - chemistry ; Membrane proteins ; Models, Biological ; P branes ; Periplasm - metabolism ; Phenylalanine - metabolism ; Phosphatidylethanolamines - metabolism ; Phosphatidylglycerols - metabolism ; physical control ; Porins ; prokaryotic cells ; Protein Folding ; Protein Structure, Secondary ; Proteins ; proton-motive force ; String theory</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (16), p.5878-5883</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-6ed5c97f4d75d592ea40dfc768c382a507d2cfd81cdc06f535f4df4f13a2732e3</citedby><cites>FETCH-LOGICAL-c496t-6ed5c97f4d75d592ea40dfc768c382a507d2cfd81cdc06f535f4df4f13a2732e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/16.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23771471$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23771471$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24715731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gessmann, Dennis</creatorcontrib><creatorcontrib>Chung, Yong Hee</creatorcontrib><creatorcontrib>Danoff, Emily J.</creatorcontrib><creatorcontrib>Plummer, Ashlee M.</creatorcontrib><creatorcontrib>Sandlin, Clifford W.</creatorcontrib><creatorcontrib>Zaccai, Nathan R.</creatorcontrib><creatorcontrib>Fleming, Karen G.</creatorcontrib><title>Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Outer membrane β-barrel proteins (OMPs) are crucial for numerous cellular processes in prokaryotes and eukaryotes. Despite extensive studies on OMP biogenesis, it is unclear why OMPs require assembly machineries to fold into their native outer membranes, as they are capable of folding quickly and efficiently through an intrinsic folding pathway in vitro. By investigating the folding of several bacterial OMPs using membranes with naturally occurring Escherichia coli lipids, we show that phosphoethanolamine and phosphoglycerol head groups impose a kinetic barrier to OMP folding. The kinetic retardation of OMP folding places a strong negative pressure against spontaneous incorporation of OMPs into inner bacterial membranes, which would dissipate the proton motive force and undoubtedly kill bacteria. We further show that prefolded β-barrel assembly machinery subunit A (BamA), the evolutionarily conserved, central subunit of the BAM complex, accelerates OMP folding by lowering the kinetic barrier imposed by phosphoethanolamine head groups. Our results suggest that OMP assembly machineries are required in vivo to enable physical control over the spontaneously occurring OMP folding reaction in the periplasm. Mechanistic studies further allowed us to derive a model for BamA function, which explains how OMP assembly can be conserved between prokaryotes and eukaryotes.</description><subject>bacteria</subject><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Biocatalysis</subject><subject>Biochemistry</subject><subject>biogenesis</subject><subject>Biological Sciences</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>eukaryotic cells</subject><subject>Kinetics</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Membrane proteins</subject><subject>Models, Biological</subject><subject>P branes</subject><subject>Periplasm - metabolism</subject><subject>Phenylalanine - metabolism</subject><subject>Phosphatidylethanolamines - metabolism</subject><subject>Phosphatidylglycerols - metabolism</subject><subject>physical control</subject><subject>Porins</subject><subject>prokaryotic cells</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>proton-motive force</subject><subject>String theory</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uEzEURi0EomlgzQrwsptpfcf22LNBKhV_UqUuoGvLsT2Ji2c82DOV8lo8CM-Eo4QEVqy88LlH934fQq-AXAIR9GocdL4EWtdMUAB4ghZAWqga1pKnaEFILSrJanaGznN-IIS0XJLn6KzgwMvEAn2_myeXcO_6VdKDw79-Viudkgt4THFyfsBdDNYPa-wzHjfb7I0OYYtNHKYUQ3AWr7Z4dMmPQefeGxz86C3eOG3xOsV5zFgPFr_X_fUL9KzTIbuXh3eJ7j9--Hbzubq9-_Tl5vq2MqxtpqpxlptWdMwKbnlbO82I7YxopKGy1pwIW5vOSjDWkKbjlBe0Yx1QXQtaO7pE7_becV71zhpXVtVBjcn3Om1V1F79-zP4jVrHR8VKQpKzIrg4CFL8Mbs8qd5n40IoCcU5K5CEAuUg2v-jHKQEykraS3S1R02KOSfXHTcConZtql2b6tRmmXjz9yFH_k99BXh7AHaTRx2AgkZxKWQhXu-JhzzFdDJQIaBYToZOR6XXyWd1_7Um0BACjIly4W-XNbtP</recordid><startdate>20140422</startdate><enddate>20140422</enddate><creator>Gessmann, Dennis</creator><creator>Chung, Yong Hee</creator><creator>Danoff, Emily J.</creator><creator>Plummer, Ashlee M.</creator><creator>Sandlin, Clifford W.</creator><creator>Zaccai, Nathan R.</creator><creator>Fleming, Karen G.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140422</creationdate><title>Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA</title><author>Gessmann, Dennis ; Chung, Yong Hee ; Danoff, Emily J. ; Plummer, Ashlee M. ; Sandlin, Clifford W. ; Zaccai, Nathan R. ; Fleming, Karen G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-6ed5c97f4d75d592ea40dfc768c382a507d2cfd81cdc06f535f4df4f13a2732e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>bacteria</topic><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Biocatalysis</topic><topic>Biochemistry</topic><topic>biogenesis</topic><topic>Biological Sciences</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>eukaryotic cells</topic><topic>Kinetics</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Membrane proteins</topic><topic>Models, Biological</topic><topic>P branes</topic><topic>Periplasm - metabolism</topic><topic>Phenylalanine - metabolism</topic><topic>Phosphatidylethanolamines - metabolism</topic><topic>Phosphatidylglycerols - metabolism</topic><topic>physical control</topic><topic>Porins</topic><topic>prokaryotic cells</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>proton-motive force</topic><topic>String theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gessmann, Dennis</creatorcontrib><creatorcontrib>Chung, Yong Hee</creatorcontrib><creatorcontrib>Danoff, Emily J.</creatorcontrib><creatorcontrib>Plummer, Ashlee M.</creatorcontrib><creatorcontrib>Sandlin, Clifford W.</creatorcontrib><creatorcontrib>Zaccai, Nathan R.</creatorcontrib><creatorcontrib>Fleming, Karen G.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gessmann, Dennis</au><au>Chung, Yong Hee</au><au>Danoff, Emily J.</au><au>Plummer, Ashlee M.</au><au>Sandlin, Clifford W.</au><au>Zaccai, Nathan R.</au><au>Fleming, Karen G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-04-22</date><risdate>2014</risdate><volume>111</volume><issue>16</issue><spage>5878</spage><epage>5883</epage><pages>5878-5883</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Outer membrane β-barrel proteins (OMPs) are crucial for numerous cellular processes in prokaryotes and eukaryotes. Despite extensive studies on OMP biogenesis, it is unclear why OMPs require assembly machineries to fold into their native outer membranes, as they are capable of folding quickly and efficiently through an intrinsic folding pathway in vitro. By investigating the folding of several bacterial OMPs using membranes with naturally occurring Escherichia coli lipids, we show that phosphoethanolamine and phosphoglycerol head groups impose a kinetic barrier to OMP folding. The kinetic retardation of OMP folding places a strong negative pressure against spontaneous incorporation of OMPs into inner bacterial membranes, which would dissipate the proton motive force and undoubtedly kill bacteria. We further show that prefolded β-barrel assembly machinery subunit A (BamA), the evolutionarily conserved, central subunit of the BAM complex, accelerates OMP folding by lowering the kinetic barrier imposed by phosphoethanolamine head groups. Our results suggest that OMP assembly machineries are required in vivo to enable physical control over the spontaneously occurring OMP folding reaction in the periplasm. Mechanistic studies further allowed us to derive a model for BamA function, which explains how OMP assembly can be conserved between prokaryotes and eukaryotes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24715731</pmid><doi>10.1073/pnas.1322473111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (16), p.5878-5883 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1518813457 |
source | JSTOR Archive Collection A-Z Listing; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | bacteria Bacterial Outer Membrane Proteins - chemistry Bacterial Outer Membrane Proteins - metabolism Biocatalysis Biochemistry biogenesis Biological Sciences Cell Membrane - metabolism Cell membranes Escherichia coli Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - metabolism eukaryotic cells Kinetics Lipids Lipids - chemistry Membrane proteins Models, Biological P branes Periplasm - metabolism Phenylalanine - metabolism Phosphatidylethanolamines - metabolism Phosphatidylglycerols - metabolism physical control Porins prokaryotic cells Protein Folding Protein Structure, Secondary Proteins proton-motive force String theory |
title | Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outer%20membrane%20%CE%B2-barrel%20protein%20folding%20is%20physically%20controlled%20by%20periplasmic%20lipid%20head%20groups%20and%20BamA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gessmann,%20Dennis&rft.date=2014-04-22&rft.volume=111&rft.issue=16&rft.spage=5878&rft.epage=5883&rft.pages=5878-5883&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1322473111&rft_dat=%3Cjstor_proqu%3E23771471%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518813457&rft_id=info:pmid/24715731&rft_jstor_id=23771471&rfr_iscdi=true |