Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA

Outer membrane β-barrel proteins (OMPs) are crucial for numerous cellular processes in prokaryotes and eukaryotes. Despite extensive studies on OMP biogenesis, it is unclear why OMPs require assembly machineries to fold into their native outer membranes, as they are capable of folding quickly and ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2014-04, Vol.111 (16), p.5878-5883
Hauptverfasser: Gessmann, Dennis, Chung, Yong Hee, Danoff, Emily J., Plummer, Ashlee M., Sandlin, Clifford W., Zaccai, Nathan R., Fleming, Karen G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5883
container_issue 16
container_start_page 5878
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Gessmann, Dennis
Chung, Yong Hee
Danoff, Emily J.
Plummer, Ashlee M.
Sandlin, Clifford W.
Zaccai, Nathan R.
Fleming, Karen G.
description Outer membrane β-barrel proteins (OMPs) are crucial for numerous cellular processes in prokaryotes and eukaryotes. Despite extensive studies on OMP biogenesis, it is unclear why OMPs require assembly machineries to fold into their native outer membranes, as they are capable of folding quickly and efficiently through an intrinsic folding pathway in vitro. By investigating the folding of several bacterial OMPs using membranes with naturally occurring Escherichia coli lipids, we show that phosphoethanolamine and phosphoglycerol head groups impose a kinetic barrier to OMP folding. The kinetic retardation of OMP folding places a strong negative pressure against spontaneous incorporation of OMPs into inner bacterial membranes, which would dissipate the proton motive force and undoubtedly kill bacteria. We further show that prefolded β-barrel assembly machinery subunit A (BamA), the evolutionarily conserved, central subunit of the BAM complex, accelerates OMP folding by lowering the kinetic barrier imposed by phosphoethanolamine head groups. Our results suggest that OMP assembly machineries are required in vivo to enable physical control over the spontaneously occurring OMP folding reaction in the periplasm. Mechanistic studies further allowed us to derive a model for BamA function, which explains how OMP assembly can be conserved between prokaryotes and eukaryotes.
doi_str_mv 10.1073/pnas.1322473111
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1518813457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23771471</jstor_id><sourcerecordid>23771471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-6ed5c97f4d75d592ea40dfc768c382a507d2cfd81cdc06f535f4df4f13a2732e3</originalsourceid><addsrcrecordid>eNqFkc1uEzEURi0EomlgzQrwsptpfcf22LNBKhV_UqUuoGvLsT2Ji2c82DOV8lo8CM-Eo4QEVqy88LlH934fQq-AXAIR9GocdL4EWtdMUAB4ghZAWqga1pKnaEFILSrJanaGznN-IIS0XJLn6KzgwMvEAn2_myeXcO_6VdKDw79-Viudkgt4THFyfsBdDNYPa-wzHjfb7I0OYYtNHKYUQ3AWr7Z4dMmPQefeGxz86C3eOG3xOsV5zFgPFr_X_fUL9KzTIbuXh3eJ7j9--Hbzubq9-_Tl5vq2MqxtpqpxlptWdMwKbnlbO82I7YxopKGy1pwIW5vOSjDWkKbjlBe0Yx1QXQtaO7pE7_becV71zhpXVtVBjcn3Om1V1F79-zP4jVrHR8VKQpKzIrg4CFL8Mbs8qd5n40IoCcU5K5CEAuUg2v-jHKQEykraS3S1R02KOSfXHTcConZtql2b6tRmmXjz9yFH_k99BXh7AHaTRx2AgkZxKWQhXu-JhzzFdDJQIaBYToZOR6XXyWd1_7Um0BACjIly4W-XNbtP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518813457</pqid></control><display><type>article</type><title>Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA</title><source>JSTOR Archive Collection A-Z Listing</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gessmann, Dennis ; Chung, Yong Hee ; Danoff, Emily J. ; Plummer, Ashlee M. ; Sandlin, Clifford W. ; Zaccai, Nathan R. ; Fleming, Karen G.</creator><creatorcontrib>Gessmann, Dennis ; Chung, Yong Hee ; Danoff, Emily J. ; Plummer, Ashlee M. ; Sandlin, Clifford W. ; Zaccai, Nathan R. ; Fleming, Karen G.</creatorcontrib><description>Outer membrane β-barrel proteins (OMPs) are crucial for numerous cellular processes in prokaryotes and eukaryotes. Despite extensive studies on OMP biogenesis, it is unclear why OMPs require assembly machineries to fold into their native outer membranes, as they are capable of folding quickly and efficiently through an intrinsic folding pathway in vitro. By investigating the folding of several bacterial OMPs using membranes with naturally occurring Escherichia coli lipids, we show that phosphoethanolamine and phosphoglycerol head groups impose a kinetic barrier to OMP folding. The kinetic retardation of OMP folding places a strong negative pressure against spontaneous incorporation of OMPs into inner bacterial membranes, which would dissipate the proton motive force and undoubtedly kill bacteria. We further show that prefolded β-barrel assembly machinery subunit A (BamA), the evolutionarily conserved, central subunit of the BAM complex, accelerates OMP folding by lowering the kinetic barrier imposed by phosphoethanolamine head groups. Our results suggest that OMP assembly machineries are required in vivo to enable physical control over the spontaneously occurring OMP folding reaction in the periplasm. Mechanistic studies further allowed us to derive a model for BamA function, which explains how OMP assembly can be conserved between prokaryotes and eukaryotes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1322473111</identifier><identifier>PMID: 24715731</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>bacteria ; Bacterial Outer Membrane Proteins - chemistry ; Bacterial Outer Membrane Proteins - metabolism ; Biocatalysis ; Biochemistry ; biogenesis ; Biological Sciences ; Cell Membrane - metabolism ; Cell membranes ; Escherichia coli ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; eukaryotic cells ; Kinetics ; Lipids ; Lipids - chemistry ; Membrane proteins ; Models, Biological ; P branes ; Periplasm - metabolism ; Phenylalanine - metabolism ; Phosphatidylethanolamines - metabolism ; Phosphatidylglycerols - metabolism ; physical control ; Porins ; prokaryotic cells ; Protein Folding ; Protein Structure, Secondary ; Proteins ; proton-motive force ; String theory</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (16), p.5878-5883</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-6ed5c97f4d75d592ea40dfc768c382a507d2cfd81cdc06f535f4df4f13a2732e3</citedby><cites>FETCH-LOGICAL-c496t-6ed5c97f4d75d592ea40dfc768c382a507d2cfd81cdc06f535f4df4f13a2732e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/16.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23771471$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23771471$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24715731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gessmann, Dennis</creatorcontrib><creatorcontrib>Chung, Yong Hee</creatorcontrib><creatorcontrib>Danoff, Emily J.</creatorcontrib><creatorcontrib>Plummer, Ashlee M.</creatorcontrib><creatorcontrib>Sandlin, Clifford W.</creatorcontrib><creatorcontrib>Zaccai, Nathan R.</creatorcontrib><creatorcontrib>Fleming, Karen G.</creatorcontrib><title>Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Outer membrane β-barrel proteins (OMPs) are crucial for numerous cellular processes in prokaryotes and eukaryotes. Despite extensive studies on OMP biogenesis, it is unclear why OMPs require assembly machineries to fold into their native outer membranes, as they are capable of folding quickly and efficiently through an intrinsic folding pathway in vitro. By investigating the folding of several bacterial OMPs using membranes with naturally occurring Escherichia coli lipids, we show that phosphoethanolamine and phosphoglycerol head groups impose a kinetic barrier to OMP folding. The kinetic retardation of OMP folding places a strong negative pressure against spontaneous incorporation of OMPs into inner bacterial membranes, which would dissipate the proton motive force and undoubtedly kill bacteria. We further show that prefolded β-barrel assembly machinery subunit A (BamA), the evolutionarily conserved, central subunit of the BAM complex, accelerates OMP folding by lowering the kinetic barrier imposed by phosphoethanolamine head groups. Our results suggest that OMP assembly machineries are required in vivo to enable physical control over the spontaneously occurring OMP folding reaction in the periplasm. Mechanistic studies further allowed us to derive a model for BamA function, which explains how OMP assembly can be conserved between prokaryotes and eukaryotes.</description><subject>bacteria</subject><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Biocatalysis</subject><subject>Biochemistry</subject><subject>biogenesis</subject><subject>Biological Sciences</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>eukaryotic cells</subject><subject>Kinetics</subject><subject>Lipids</subject><subject>Lipids - chemistry</subject><subject>Membrane proteins</subject><subject>Models, Biological</subject><subject>P branes</subject><subject>Periplasm - metabolism</subject><subject>Phenylalanine - metabolism</subject><subject>Phosphatidylethanolamines - metabolism</subject><subject>Phosphatidylglycerols - metabolism</subject><subject>physical control</subject><subject>Porins</subject><subject>prokaryotic cells</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>proton-motive force</subject><subject>String theory</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1uEzEURi0EomlgzQrwsptpfcf22LNBKhV_UqUuoGvLsT2Ji2c82DOV8lo8CM-Eo4QEVqy88LlH934fQq-AXAIR9GocdL4EWtdMUAB4ghZAWqga1pKnaEFILSrJanaGznN-IIS0XJLn6KzgwMvEAn2_myeXcO_6VdKDw79-Viudkgt4THFyfsBdDNYPa-wzHjfb7I0OYYtNHKYUQ3AWr7Z4dMmPQefeGxz86C3eOG3xOsV5zFgPFr_X_fUL9KzTIbuXh3eJ7j9--Hbzubq9-_Tl5vq2MqxtpqpxlptWdMwKbnlbO82I7YxopKGy1pwIW5vOSjDWkKbjlBe0Yx1QXQtaO7pE7_becV71zhpXVtVBjcn3Om1V1F79-zP4jVrHR8VKQpKzIrg4CFL8Mbs8qd5n40IoCcU5K5CEAuUg2v-jHKQEykraS3S1R02KOSfXHTcConZtql2b6tRmmXjz9yFH_k99BXh7AHaTRx2AgkZxKWQhXu-JhzzFdDJQIaBYToZOR6XXyWd1_7Um0BACjIly4W-XNbtP</recordid><startdate>20140422</startdate><enddate>20140422</enddate><creator>Gessmann, Dennis</creator><creator>Chung, Yong Hee</creator><creator>Danoff, Emily J.</creator><creator>Plummer, Ashlee M.</creator><creator>Sandlin, Clifford W.</creator><creator>Zaccai, Nathan R.</creator><creator>Fleming, Karen G.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20140422</creationdate><title>Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA</title><author>Gessmann, Dennis ; Chung, Yong Hee ; Danoff, Emily J. ; Plummer, Ashlee M. ; Sandlin, Clifford W. ; Zaccai, Nathan R. ; Fleming, Karen G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-6ed5c97f4d75d592ea40dfc768c382a507d2cfd81cdc06f535f4df4f13a2732e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>bacteria</topic><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Biocatalysis</topic><topic>Biochemistry</topic><topic>biogenesis</topic><topic>Biological Sciences</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>eukaryotic cells</topic><topic>Kinetics</topic><topic>Lipids</topic><topic>Lipids - chemistry</topic><topic>Membrane proteins</topic><topic>Models, Biological</topic><topic>P branes</topic><topic>Periplasm - metabolism</topic><topic>Phenylalanine - metabolism</topic><topic>Phosphatidylethanolamines - metabolism</topic><topic>Phosphatidylglycerols - metabolism</topic><topic>physical control</topic><topic>Porins</topic><topic>prokaryotic cells</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>proton-motive force</topic><topic>String theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gessmann, Dennis</creatorcontrib><creatorcontrib>Chung, Yong Hee</creatorcontrib><creatorcontrib>Danoff, Emily J.</creatorcontrib><creatorcontrib>Plummer, Ashlee M.</creatorcontrib><creatorcontrib>Sandlin, Clifford W.</creatorcontrib><creatorcontrib>Zaccai, Nathan R.</creatorcontrib><creatorcontrib>Fleming, Karen G.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gessmann, Dennis</au><au>Chung, Yong Hee</au><au>Danoff, Emily J.</au><au>Plummer, Ashlee M.</au><au>Sandlin, Clifford W.</au><au>Zaccai, Nathan R.</au><au>Fleming, Karen G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-04-22</date><risdate>2014</risdate><volume>111</volume><issue>16</issue><spage>5878</spage><epage>5883</epage><pages>5878-5883</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Outer membrane β-barrel proteins (OMPs) are crucial for numerous cellular processes in prokaryotes and eukaryotes. Despite extensive studies on OMP biogenesis, it is unclear why OMPs require assembly machineries to fold into their native outer membranes, as they are capable of folding quickly and efficiently through an intrinsic folding pathway in vitro. By investigating the folding of several bacterial OMPs using membranes with naturally occurring Escherichia coli lipids, we show that phosphoethanolamine and phosphoglycerol head groups impose a kinetic barrier to OMP folding. The kinetic retardation of OMP folding places a strong negative pressure against spontaneous incorporation of OMPs into inner bacterial membranes, which would dissipate the proton motive force and undoubtedly kill bacteria. We further show that prefolded β-barrel assembly machinery subunit A (BamA), the evolutionarily conserved, central subunit of the BAM complex, accelerates OMP folding by lowering the kinetic barrier imposed by phosphoethanolamine head groups. Our results suggest that OMP assembly machineries are required in vivo to enable physical control over the spontaneously occurring OMP folding reaction in the periplasm. Mechanistic studies further allowed us to derive a model for BamA function, which explains how OMP assembly can be conserved between prokaryotes and eukaryotes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24715731</pmid><doi>10.1073/pnas.1322473111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-04, Vol.111 (16), p.5878-5883
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1518813457
source JSTOR Archive Collection A-Z Listing; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects bacteria
Bacterial Outer Membrane Proteins - chemistry
Bacterial Outer Membrane Proteins - metabolism
Biocatalysis
Biochemistry
biogenesis
Biological Sciences
Cell Membrane - metabolism
Cell membranes
Escherichia coli
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
eukaryotic cells
Kinetics
Lipids
Lipids - chemistry
Membrane proteins
Models, Biological
P branes
Periplasm - metabolism
Phenylalanine - metabolism
Phosphatidylethanolamines - metabolism
Phosphatidylglycerols - metabolism
physical control
Porins
prokaryotic cells
Protein Folding
Protein Structure, Secondary
Proteins
proton-motive force
String theory
title Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Outer%20membrane%20%CE%B2-barrel%20protein%20folding%20is%20physically%20controlled%20by%20periplasmic%20lipid%20head%20groups%20and%20BamA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Gessmann,%20Dennis&rft.date=2014-04-22&rft.volume=111&rft.issue=16&rft.spage=5878&rft.epage=5883&rft.pages=5878-5883&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1322473111&rft_dat=%3Cjstor_proqu%3E23771471%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518813457&rft_id=info:pmid/24715731&rft_jstor_id=23771471&rfr_iscdi=true