rosemary extract enriched in carnosic acid improves circulating adipocytokines and modulates key metabolic sensors in lean Zucker rats: Critical and contrasting differences in the obese genotype

SCOPE: Carnosic acid (CA) and rosemary extracts (REs) have antiobesity effects but the mechanisms are not understood. We investigated some of the potential mechanisms contributing to the metabolic effects of an RE enriched in CA. METHODS AND RESULTS: An RE (∼40% CA) was administered to lean (Le, fa/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular nutrition & food research 2014-05, Vol.58 (5), p.942-953
Hauptverfasser: Romo‐Vaquero, María, Larrosa, Mar, Yáñez‐Gascón, María J, Issaly, Nicolas, Flanagan, John, Roller, Marc, Tomás‐Barberán, Francisco A, Espín, Juan C, García‐Conesa, María‐Teresa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 953
container_issue 5
container_start_page 942
container_title Molecular nutrition & food research
container_volume 58
creator Romo‐Vaquero, María
Larrosa, Mar
Yáñez‐Gascón, María J
Issaly, Nicolas
Flanagan, John
Roller, Marc
Tomás‐Barberán, Francisco A
Espín, Juan C
García‐Conesa, María‐Teresa
description SCOPE: Carnosic acid (CA) and rosemary extracts (REs) have antiobesity effects but the mechanisms are not understood. We investigated some of the potential mechanisms contributing to the metabolic effects of an RE enriched in CA. METHODS AND RESULTS: An RE (∼40% CA) was administered to lean (Le, fa/+) and obese (Ob, fa/fa) female Zucker rats for 64 days. Several adipocytokines, brain‐derived neurotrophic factor, phosphorylated AMP‐activated protein kinase, and hepatic gene expression changes were investigated. The RE significantly decreased circulating tumor necrosis factor alpha (RE/CT = 0.36, p < 0.0003), IL‐1β (0.48, p < 0.032), and leptin (0.48, p < 0.002), and upregulated adiponectin (1.47, p < 0.045) in the Le rats. The RE also induced phase I and phase II gene expression and the peroxisome proliferator‐activated receptor gamma coactivator 1‐alpha. Notably, the RE decreased adipose phosphorylated AMP‐activated protein kinase and did not affect hepatic peroxisome proliferator‐activated receptor gamma coactivator 1‐alpha in the Ob rats. CONCLUSION: Our results show that an RE rich in CA exerts anti‐inflammatory effects and affects hepatic metabolism in normal Le rats. We report significant differences in the expression and regulation of key metabolic sensors between Le and Ob rats that may contribute to explain the different ability of the two genotypes to respond to the RE.
doi_str_mv 10.1002/mnfr.201300524
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1518622220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1518622220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4322-4fd5fbbcaa8f788ac0833a2dbe5203bed2b088ef1e524bb4eb46cb0bf8cbac273</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhUcIREthyxK8QWKT4NckI3Y0Ii0QigRUSN1Y157r1GTGDrYDzd_jl-FJQljijV_fOffq3Kp6yuiYUcpf9d7GMadMUFpzea86ZRMmRpIJcf945vVJ9Sil75QKxqV4WJ1wWdeUU3la_Y4hYQ9xS_AuRzCZoI_O3GJLnCcGog_JGQLGlYd-HcNPTMS4aDYdZOeXBFq3Dmabw8r58gW-JX1oh99yW-GW9JhBh66YJPQpxDQYdwie3GzMCiOJkNNrMosuOwPdzsEEX5pJuwKtsxYjeoM7Zb5FEjQmJEv0IW_X-Lh6YKFL-OSwn1XX87dfZ5ejxaeLd7M3i5GRgvORtG1ttTYAjZ02DRjaCAG81VhzKjS2XNOmQcvKXWotUcuJ0VTbxmgwfCrOqpd735LCjw2mrHqXDHYdeAybpFjNmgkvixZ0vEdNiTdFtGod3ZCyYlQNc1PD3NRxbkXw7OC90T22R_zvoArw4gBAKinZCN649I9rZOmQDpXlnvvlOtz-p6z6eDX_zJngRTbay1zKeHeUQVypyVRMa_Xt6kKdz-r388WHS3VT-Od73kJQsIyllesvxVdSSqclWCr-AOUIz-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518622220</pqid></control><display><type>article</type><title>rosemary extract enriched in carnosic acid improves circulating adipocytokines and modulates key metabolic sensors in lean Zucker rats: Critical and contrasting differences in the obese genotype</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Romo‐Vaquero, María ; Larrosa, Mar ; Yáñez‐Gascón, María J ; Issaly, Nicolas ; Flanagan, John ; Roller, Marc ; Tomás‐Barberán, Francisco A ; Espín, Juan C ; García‐Conesa, María‐Teresa</creator><creatorcontrib>Romo‐Vaquero, María ; Larrosa, Mar ; Yáñez‐Gascón, María J ; Issaly, Nicolas ; Flanagan, John ; Roller, Marc ; Tomás‐Barberán, Francisco A ; Espín, Juan C ; García‐Conesa, María‐Teresa</creatorcontrib><description>SCOPE: Carnosic acid (CA) and rosemary extracts (REs) have antiobesity effects but the mechanisms are not understood. We investigated some of the potential mechanisms contributing to the metabolic effects of an RE enriched in CA. METHODS AND RESULTS: An RE (∼40% CA) was administered to lean (Le, fa/+) and obese (Ob, fa/fa) female Zucker rats for 64 days. Several adipocytokines, brain‐derived neurotrophic factor, phosphorylated AMP‐activated protein kinase, and hepatic gene expression changes were investigated. The RE significantly decreased circulating tumor necrosis factor alpha (RE/CT = 0.36, p &lt; 0.0003), IL‐1β (0.48, p &lt; 0.032), and leptin (0.48, p &lt; 0.002), and upregulated adiponectin (1.47, p &lt; 0.045) in the Le rats. The RE also induced phase I and phase II gene expression and the peroxisome proliferator‐activated receptor gamma coactivator 1‐alpha. Notably, the RE decreased adipose phosphorylated AMP‐activated protein kinase and did not affect hepatic peroxisome proliferator‐activated receptor gamma coactivator 1‐alpha in the Ob rats. CONCLUSION: Our results show that an RE rich in CA exerts anti‐inflammatory effects and affects hepatic metabolism in normal Le rats. We report significant differences in the expression and regulation of key metabolic sensors between Le and Ob rats that may contribute to explain the different ability of the two genotypes to respond to the RE.</description><identifier>ISSN: 1613-4125</identifier><identifier>EISSN: 1613-4133</identifier><identifier>DOI: 10.1002/mnfr.201300524</identifier><identifier>PMID: 24550204</identifier><language>eng</language><publisher>Weinheim: Wiley-VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Adiponectin ; Adiponectin - genetics ; Adiponectin - metabolism ; AMP-Activated Protein Kinases - genetics ; AMP-Activated Protein Kinases - metabolism ; Animals ; Anti-Inflammatory Agents - pharmacology ; Anti-Obesity Agents - pharmacology ; Biological and medical sciences ; Brain-Derived Neurotrophic Factor - genetics ; Brain-Derived Neurotrophic Factor - metabolism ; Diterpenes, Abietane - pharmacology ; Feeding. Feeding behavior ; Female ; Fundamental and applied biological sciences. Psychology ; gene expression ; gene expression regulation ; Genotype ; IL-1β ; interleukin-1 ; Interleukin-1beta - genetics ; Interleukin-1beta - metabolism ; Leptin ; Leptin - genetics ; Leptin - metabolism ; Liver - drug effects ; Liver - metabolism ; Medical sciences ; Metabolic diseases ; metabolism ; Obesity ; Obesity - drug therapy ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Phosphorylated AMP-activated protein kinase ; Plant Extracts - pharmacology ; protein kinases ; Rats ; Rats, Zucker ; rosemary ; Rosmarinus - chemistry ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Tumor necrosis factor alpha ; Tumor Necrosis Factor-alpha - genetics ; Tumor Necrosis Factor-alpha - metabolism ; Up-Regulation ; Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><ispartof>Molecular nutrition &amp; food research, 2014-05, Vol.58 (5), p.942-953</ispartof><rights>2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4322-4fd5fbbcaa8f788ac0833a2dbe5203bed2b088ef1e524bb4eb46cb0bf8cbac273</citedby><cites>FETCH-LOGICAL-c4322-4fd5fbbcaa8f788ac0833a2dbe5203bed2b088ef1e524bb4eb46cb0bf8cbac273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmnfr.201300524$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmnfr.201300524$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28427300$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24550204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romo‐Vaquero, María</creatorcontrib><creatorcontrib>Larrosa, Mar</creatorcontrib><creatorcontrib>Yáñez‐Gascón, María J</creatorcontrib><creatorcontrib>Issaly, Nicolas</creatorcontrib><creatorcontrib>Flanagan, John</creatorcontrib><creatorcontrib>Roller, Marc</creatorcontrib><creatorcontrib>Tomás‐Barberán, Francisco A</creatorcontrib><creatorcontrib>Espín, Juan C</creatorcontrib><creatorcontrib>García‐Conesa, María‐Teresa</creatorcontrib><title>rosemary extract enriched in carnosic acid improves circulating adipocytokines and modulates key metabolic sensors in lean Zucker rats: Critical and contrasting differences in the obese genotype</title><title>Molecular nutrition &amp; food research</title><addtitle>Mol. Nutr. Food Res</addtitle><description>SCOPE: Carnosic acid (CA) and rosemary extracts (REs) have antiobesity effects but the mechanisms are not understood. We investigated some of the potential mechanisms contributing to the metabolic effects of an RE enriched in CA. METHODS AND RESULTS: An RE (∼40% CA) was administered to lean (Le, fa/+) and obese (Ob, fa/fa) female Zucker rats for 64 days. Several adipocytokines, brain‐derived neurotrophic factor, phosphorylated AMP‐activated protein kinase, and hepatic gene expression changes were investigated. The RE significantly decreased circulating tumor necrosis factor alpha (RE/CT = 0.36, p &lt; 0.0003), IL‐1β (0.48, p &lt; 0.032), and leptin (0.48, p &lt; 0.002), and upregulated adiponectin (1.47, p &lt; 0.045) in the Le rats. The RE also induced phase I and phase II gene expression and the peroxisome proliferator‐activated receptor gamma coactivator 1‐alpha. Notably, the RE decreased adipose phosphorylated AMP‐activated protein kinase and did not affect hepatic peroxisome proliferator‐activated receptor gamma coactivator 1‐alpha in the Ob rats. CONCLUSION: Our results show that an RE rich in CA exerts anti‐inflammatory effects and affects hepatic metabolism in normal Le rats. We report significant differences in the expression and regulation of key metabolic sensors between Le and Ob rats that may contribute to explain the different ability of the two genotypes to respond to the RE.</description><subject>Adiponectin</subject><subject>Adiponectin - genetics</subject><subject>Adiponectin - metabolism</subject><subject>AMP-Activated Protein Kinases - genetics</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Anti-Inflammatory Agents - pharmacology</subject><subject>Anti-Obesity Agents - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Brain-Derived Neurotrophic Factor - genetics</subject><subject>Brain-Derived Neurotrophic Factor - metabolism</subject><subject>Diterpenes, Abietane - pharmacology</subject><subject>Feeding. Feeding behavior</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression</subject><subject>gene expression regulation</subject><subject>Genotype</subject><subject>IL-1β</subject><subject>interleukin-1</subject><subject>Interleukin-1beta - genetics</subject><subject>Interleukin-1beta - metabolism</subject><subject>Leptin</subject><subject>Leptin - genetics</subject><subject>Leptin - metabolism</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Medical sciences</subject><subject>Metabolic diseases</subject><subject>metabolism</subject><subject>Obesity</subject><subject>Obesity - drug therapy</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Phosphorylated AMP-activated protein kinase</subject><subject>Plant Extracts - pharmacology</subject><subject>protein kinases</subject><subject>Rats</subject><subject>Rats, Zucker</subject><subject>rosemary</subject><subject>Rosmarinus - chemistry</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Tumor necrosis factor alpha</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Up-Regulation</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><issn>1613-4125</issn><issn>1613-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEUhUcIREthyxK8QWKT4NckI3Y0Ii0QigRUSN1Y157r1GTGDrYDzd_jl-FJQljijV_fOffq3Kp6yuiYUcpf9d7GMadMUFpzea86ZRMmRpIJcf945vVJ9Sil75QKxqV4WJ1wWdeUU3la_Y4hYQ9xS_AuRzCZoI_O3GJLnCcGog_JGQLGlYd-HcNPTMS4aDYdZOeXBFq3Dmabw8r58gW-JX1oh99yW-GW9JhBh66YJPQpxDQYdwie3GzMCiOJkNNrMosuOwPdzsEEX5pJuwKtsxYjeoM7Zb5FEjQmJEv0IW_X-Lh6YKFL-OSwn1XX87dfZ5ejxaeLd7M3i5GRgvORtG1ttTYAjZ02DRjaCAG81VhzKjS2XNOmQcvKXWotUcuJ0VTbxmgwfCrOqpd735LCjw2mrHqXDHYdeAybpFjNmgkvixZ0vEdNiTdFtGod3ZCyYlQNc1PD3NRxbkXw7OC90T22R_zvoArw4gBAKinZCN649I9rZOmQDpXlnvvlOtz-p6z6eDX_zJngRTbay1zKeHeUQVypyVRMa_Xt6kKdz-r388WHS3VT-Od73kJQsIyllesvxVdSSqclWCr-AOUIz-M</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Romo‐Vaquero, María</creator><creator>Larrosa, Mar</creator><creator>Yáñez‐Gascón, María J</creator><creator>Issaly, Nicolas</creator><creator>Flanagan, John</creator><creator>Roller, Marc</creator><creator>Tomás‐Barberán, Francisco A</creator><creator>Espín, Juan C</creator><creator>García‐Conesa, María‐Teresa</creator><general>Wiley-VCH Verlag GmbH &amp; Co. KGaA</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201405</creationdate><title>rosemary extract enriched in carnosic acid improves circulating adipocytokines and modulates key metabolic sensors in lean Zucker rats: Critical and contrasting differences in the obese genotype</title><author>Romo‐Vaquero, María ; Larrosa, Mar ; Yáñez‐Gascón, María J ; Issaly, Nicolas ; Flanagan, John ; Roller, Marc ; Tomás‐Barberán, Francisco A ; Espín, Juan C ; García‐Conesa, María‐Teresa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4322-4fd5fbbcaa8f788ac0833a2dbe5203bed2b088ef1e524bb4eb46cb0bf8cbac273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adiponectin</topic><topic>Adiponectin - genetics</topic><topic>Adiponectin - metabolism</topic><topic>AMP-Activated Protein Kinases - genetics</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Anti-Inflammatory Agents - pharmacology</topic><topic>Anti-Obesity Agents - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Brain-Derived Neurotrophic Factor - genetics</topic><topic>Brain-Derived Neurotrophic Factor - metabolism</topic><topic>Diterpenes, Abietane - pharmacology</topic><topic>Feeding. Feeding behavior</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression</topic><topic>gene expression regulation</topic><topic>Genotype</topic><topic>IL-1β</topic><topic>interleukin-1</topic><topic>Interleukin-1beta - genetics</topic><topic>Interleukin-1beta - metabolism</topic><topic>Leptin</topic><topic>Leptin - genetics</topic><topic>Leptin - metabolism</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Medical sciences</topic><topic>Metabolic diseases</topic><topic>metabolism</topic><topic>Obesity</topic><topic>Obesity - drug therapy</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Phosphorylated AMP-activated protein kinase</topic><topic>Plant Extracts - pharmacology</topic><topic>protein kinases</topic><topic>Rats</topic><topic>Rats, Zucker</topic><topic>rosemary</topic><topic>Rosmarinus - chemistry</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Tumor necrosis factor alpha</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Up-Regulation</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romo‐Vaquero, María</creatorcontrib><creatorcontrib>Larrosa, Mar</creatorcontrib><creatorcontrib>Yáñez‐Gascón, María J</creatorcontrib><creatorcontrib>Issaly, Nicolas</creatorcontrib><creatorcontrib>Flanagan, John</creatorcontrib><creatorcontrib>Roller, Marc</creatorcontrib><creatorcontrib>Tomás‐Barberán, Francisco A</creatorcontrib><creatorcontrib>Espín, Juan C</creatorcontrib><creatorcontrib>García‐Conesa, María‐Teresa</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular nutrition &amp; food research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romo‐Vaquero, María</au><au>Larrosa, Mar</au><au>Yáñez‐Gascón, María J</au><au>Issaly, Nicolas</au><au>Flanagan, John</au><au>Roller, Marc</au><au>Tomás‐Barberán, Francisco A</au><au>Espín, Juan C</au><au>García‐Conesa, María‐Teresa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>rosemary extract enriched in carnosic acid improves circulating adipocytokines and modulates key metabolic sensors in lean Zucker rats: Critical and contrasting differences in the obese genotype</atitle><jtitle>Molecular nutrition &amp; food research</jtitle><addtitle>Mol. Nutr. Food Res</addtitle><date>2014-05</date><risdate>2014</risdate><volume>58</volume><issue>5</issue><spage>942</spage><epage>953</epage><pages>942-953</pages><issn>1613-4125</issn><eissn>1613-4133</eissn><abstract>SCOPE: Carnosic acid (CA) and rosemary extracts (REs) have antiobesity effects but the mechanisms are not understood. We investigated some of the potential mechanisms contributing to the metabolic effects of an RE enriched in CA. METHODS AND RESULTS: An RE (∼40% CA) was administered to lean (Le, fa/+) and obese (Ob, fa/fa) female Zucker rats for 64 days. Several adipocytokines, brain‐derived neurotrophic factor, phosphorylated AMP‐activated protein kinase, and hepatic gene expression changes were investigated. The RE significantly decreased circulating tumor necrosis factor alpha (RE/CT = 0.36, p &lt; 0.0003), IL‐1β (0.48, p &lt; 0.032), and leptin (0.48, p &lt; 0.002), and upregulated adiponectin (1.47, p &lt; 0.045) in the Le rats. The RE also induced phase I and phase II gene expression and the peroxisome proliferator‐activated receptor gamma coactivator 1‐alpha. Notably, the RE decreased adipose phosphorylated AMP‐activated protein kinase and did not affect hepatic peroxisome proliferator‐activated receptor gamma coactivator 1‐alpha in the Ob rats. CONCLUSION: Our results show that an RE rich in CA exerts anti‐inflammatory effects and affects hepatic metabolism in normal Le rats. We report significant differences in the expression and regulation of key metabolic sensors between Le and Ob rats that may contribute to explain the different ability of the two genotypes to respond to the RE.</abstract><cop>Weinheim</cop><pub>Wiley-VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>24550204</pmid><doi>10.1002/mnfr.201300524</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-4125
ispartof Molecular nutrition & food research, 2014-05, Vol.58 (5), p.942-953
issn 1613-4125
1613-4133
language eng
recordid cdi_proquest_miscellaneous_1518622220
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Adiponectin
Adiponectin - genetics
Adiponectin - metabolism
AMP-Activated Protein Kinases - genetics
AMP-Activated Protein Kinases - metabolism
Animals
Anti-Inflammatory Agents - pharmacology
Anti-Obesity Agents - pharmacology
Biological and medical sciences
Brain-Derived Neurotrophic Factor - genetics
Brain-Derived Neurotrophic Factor - metabolism
Diterpenes, Abietane - pharmacology
Feeding. Feeding behavior
Female
Fundamental and applied biological sciences. Psychology
gene expression
gene expression regulation
Genotype
IL-1β
interleukin-1
Interleukin-1beta - genetics
Interleukin-1beta - metabolism
Leptin
Leptin - genetics
Leptin - metabolism
Liver - drug effects
Liver - metabolism
Medical sciences
Metabolic diseases
metabolism
Obesity
Obesity - drug therapy
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Phosphorylated AMP-activated protein kinase
Plant Extracts - pharmacology
protein kinases
Rats
Rats, Zucker
rosemary
Rosmarinus - chemistry
Transcription Factors - genetics
Transcription Factors - metabolism
Tumor necrosis factor alpha
Tumor Necrosis Factor-alpha - genetics
Tumor Necrosis Factor-alpha - metabolism
Up-Regulation
Vertebrates: anatomy and physiology, studies on body, several organs or systems
title rosemary extract enriched in carnosic acid improves circulating adipocytokines and modulates key metabolic sensors in lean Zucker rats: Critical and contrasting differences in the obese genotype
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=rosemary%20extract%20enriched%20in%20carnosic%20acid%20improves%20circulating%20adipocytokines%20and%20modulates%20key%20metabolic%20sensors%20in%20lean%20Zucker%20rats:%20Critical%20and%20contrasting%20differences%20in%20the%20obese%20genotype&rft.jtitle=Molecular%20nutrition%20&%20food%20research&rft.au=Romo%E2%80%90Vaquero,%20Mar%C3%ADa&rft.date=2014-05&rft.volume=58&rft.issue=5&rft.spage=942&rft.epage=953&rft.pages=942-953&rft.issn=1613-4125&rft.eissn=1613-4133&rft_id=info:doi/10.1002/mnfr.201300524&rft_dat=%3Cproquest_cross%3E1518622220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1518622220&rft_id=info:pmid/24550204&rfr_iscdi=true