Bayesian averaging of classical estimates in forecasting macroeconomic indicators with application of business survey data

In this paper, we develop a methodology for forecasting key macroeconomic indicators, based on business survey data. We estimate a large set of models, using an autoregressive specification, with regressors selected from business and household survey data. Our methodology is based on the Bayesian av...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Empirica 2014-02, Vol.41 (1), p.53-68
Hauptverfasser: Białowolski, Piotr, Kuszewski, Tomasz, Witkowski, Bartosz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 53
container_title Empirica
container_volume 41
creator Białowolski, Piotr
Kuszewski, Tomasz
Witkowski, Bartosz
description In this paper, we develop a methodology for forecasting key macroeconomic indicators, based on business survey data. We estimate a large set of models, using an autoregressive specification, with regressors selected from business and household survey data. Our methodology is based on the Bayesian averaging of classical estimates method. Additionally, we examine the impact of deterministic and stochastic seasonality of the business survey time series on the outcome of the forecasting process. We propose an intuitive procedure for incorporating both types of seasonality into the forecasting process. After estimating the specified models, we check the accuracy of the forecasts.
doi_str_mv 10.1007/s10663-013-9227-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1518248458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3255957171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-7ae3064c23247f6586750aa5a7c9b206bc3a49024eceab09859ff763ce6530253</originalsourceid><addsrcrecordid>eNp1kc1uFDEQhC0EEkvIA-RmiQuXIe3_mSNEBCJF4gJnq9fxLI5m7cU9E7J5-ni0HBASJ8vtr0rtKsYuBHwQAO6SBFirOhCqG6R03eMLthHGqc4OQrxkG1Aaut5p_Zq9IboHgKFdNuzpEx4jJcwcH2LFXco7XkYeJiRKASceaU57nCPxlPlYagzYJo3aY6glhpLLPoX2eNfwuVTiv9P8k-PhMK2DVPLqt10o5UjEaakP8cjvcMa37NWIE8XzP-cZ-3H9-fvV1-7225ebq4-3XdBCzZ3DqMDqIJXUbrSmt84AokEXhq0Euw0K9QBSxxBxC0NvhnF0VoVojQJp1Bl7f_I91PJraf_x-0QhThPmWBbywohe6l6bvqHv_kHvy1Jz226loIVoDTRKnKgWAFGNoz_UllE9egF-bcOf2vCtDb-24R-bRp401Ni8i_Uv5_-KngE0hI8z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510034650</pqid></control><display><type>article</type><title>Bayesian averaging of classical estimates in forecasting macroeconomic indicators with application of business survey data</title><source>PAIS Index</source><source>SpringerLink Journals - AutoHoldings</source><creator>Białowolski, Piotr ; Kuszewski, Tomasz ; Witkowski, Bartosz</creator><creatorcontrib>Białowolski, Piotr ; Kuszewski, Tomasz ; Witkowski, Bartosz</creatorcontrib><description>In this paper, we develop a methodology for forecasting key macroeconomic indicators, based on business survey data. We estimate a large set of models, using an autoregressive specification, with regressors selected from business and household survey data. Our methodology is based on the Bayesian averaging of classical estimates method. Additionally, we examine the impact of deterministic and stochastic seasonality of the business survey time series on the outcome of the forecasting process. We propose an intuitive procedure for incorporating both types of seasonality into the forecasting process. After estimating the specified models, we check the accuracy of the forecasts.</description><identifier>ISSN: 0340-8744</identifier><identifier>EISSN: 1573-6911</identifier><identifier>DOI: 10.1007/s10663-013-9227-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Accuracy ; Bayesian method ; Econometrics ; Economic crisis ; Economic forecasts ; Economic growth ; Economic indicators ; Economic models ; Economic statistics ; Economic theory ; Economics ; Economics and Finance ; Estimates ; European Integration ; Federal Reserve monetary policy ; Forecasting ; Forecasting techniques ; GDP ; Gross Domestic Product ; Industrial Organization ; International Economics ; Macroeconomics ; Macroeconomics/Monetary Economics//Financial Economics ; Original Paper ; Pessimism ; Polls &amp; surveys ; Public Finance ; Seasonal variations ; Seasonality ; Stochastic processes ; Studies ; Survey data ; Time series ; Unemployment</subject><ispartof>Empirica, 2014-02, Vol.41 (1), p.53-68</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-7ae3064c23247f6586750aa5a7c9b206bc3a49024eceab09859ff763ce6530253</citedby><cites>FETCH-LOGICAL-c413t-7ae3064c23247f6586750aa5a7c9b206bc3a49024eceab09859ff763ce6530253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10663-013-9227-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10663-013-9227-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27865,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Białowolski, Piotr</creatorcontrib><creatorcontrib>Kuszewski, Tomasz</creatorcontrib><creatorcontrib>Witkowski, Bartosz</creatorcontrib><title>Bayesian averaging of classical estimates in forecasting macroeconomic indicators with application of business survey data</title><title>Empirica</title><addtitle>Empirica</addtitle><description>In this paper, we develop a methodology for forecasting key macroeconomic indicators, based on business survey data. We estimate a large set of models, using an autoregressive specification, with regressors selected from business and household survey data. Our methodology is based on the Bayesian averaging of classical estimates method. Additionally, we examine the impact of deterministic and stochastic seasonality of the business survey time series on the outcome of the forecasting process. We propose an intuitive procedure for incorporating both types of seasonality into the forecasting process. After estimating the specified models, we check the accuracy of the forecasts.</description><subject>Accuracy</subject><subject>Bayesian method</subject><subject>Econometrics</subject><subject>Economic crisis</subject><subject>Economic forecasts</subject><subject>Economic growth</subject><subject>Economic indicators</subject><subject>Economic models</subject><subject>Economic statistics</subject><subject>Economic theory</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Estimates</subject><subject>European Integration</subject><subject>Federal Reserve monetary policy</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>GDP</subject><subject>Gross Domestic Product</subject><subject>Industrial Organization</subject><subject>International Economics</subject><subject>Macroeconomics</subject><subject>Macroeconomics/Monetary Economics//Financial Economics</subject><subject>Original Paper</subject><subject>Pessimism</subject><subject>Polls &amp; surveys</subject><subject>Public Finance</subject><subject>Seasonal variations</subject><subject>Seasonality</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Survey data</subject><subject>Time series</subject><subject>Unemployment</subject><issn>0340-8744</issn><issn>1573-6911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1uFDEQhC0EEkvIA-RmiQuXIe3_mSNEBCJF4gJnq9fxLI5m7cU9E7J5-ni0HBASJ8vtr0rtKsYuBHwQAO6SBFirOhCqG6R03eMLthHGqc4OQrxkG1Aaut5p_Zq9IboHgKFdNuzpEx4jJcwcH2LFXco7XkYeJiRKASceaU57nCPxlPlYagzYJo3aY6glhpLLPoX2eNfwuVTiv9P8k-PhMK2DVPLqt10o5UjEaakP8cjvcMa37NWIE8XzP-cZ-3H9-fvV1-7225ebq4-3XdBCzZ3DqMDqIJXUbrSmt84AokEXhq0Euw0K9QBSxxBxC0NvhnF0VoVojQJp1Bl7f_I91PJraf_x-0QhThPmWBbywohe6l6bvqHv_kHvy1Jz226loIVoDTRKnKgWAFGNoz_UllE9egF-bcOf2vCtDb-24R-bRp401Ni8i_Uv5_-KngE0hI8z</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Białowolski, Piotr</creator><creator>Kuszewski, Tomasz</creator><creator>Witkowski, Bartosz</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7TQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DHY</scope><scope>DON</scope><scope>DPSOV</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>KC-</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2L</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20140201</creationdate><title>Bayesian averaging of classical estimates in forecasting macroeconomic indicators with application of business survey data</title><author>Białowolski, Piotr ; Kuszewski, Tomasz ; Witkowski, Bartosz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-7ae3064c23247f6586750aa5a7c9b206bc3a49024eceab09859ff763ce6530253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Bayesian method</topic><topic>Econometrics</topic><topic>Economic crisis</topic><topic>Economic forecasts</topic><topic>Economic growth</topic><topic>Economic indicators</topic><topic>Economic models</topic><topic>Economic statistics</topic><topic>Economic theory</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Estimates</topic><topic>European Integration</topic><topic>Federal Reserve monetary policy</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>GDP</topic><topic>Gross Domestic Product</topic><topic>Industrial Organization</topic><topic>International Economics</topic><topic>Macroeconomics</topic><topic>Macroeconomics/Monetary Economics//Financial Economics</topic><topic>Original Paper</topic><topic>Pessimism</topic><topic>Polls &amp; surveys</topic><topic>Public Finance</topic><topic>Seasonal variations</topic><topic>Seasonality</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Survey data</topic><topic>Time series</topic><topic>Unemployment</topic><toplevel>online_resources</toplevel><creatorcontrib>Białowolski, Piotr</creatorcontrib><creatorcontrib>Kuszewski, Tomasz</creatorcontrib><creatorcontrib>Witkowski, Bartosz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>PAIS Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>Politics Collection</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Politics Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Political Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Empirica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Białowolski, Piotr</au><au>Kuszewski, Tomasz</au><au>Witkowski, Bartosz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian averaging of classical estimates in forecasting macroeconomic indicators with application of business survey data</atitle><jtitle>Empirica</jtitle><stitle>Empirica</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>41</volume><issue>1</issue><spage>53</spage><epage>68</epage><pages>53-68</pages><issn>0340-8744</issn><eissn>1573-6911</eissn><abstract>In this paper, we develop a methodology for forecasting key macroeconomic indicators, based on business survey data. We estimate a large set of models, using an autoregressive specification, with regressors selected from business and household survey data. Our methodology is based on the Bayesian averaging of classical estimates method. Additionally, we examine the impact of deterministic and stochastic seasonality of the business survey time series on the outcome of the forecasting process. We propose an intuitive procedure for incorporating both types of seasonality into the forecasting process. After estimating the specified models, we check the accuracy of the forecasts.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10663-013-9227-x</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0340-8744
ispartof Empirica, 2014-02, Vol.41 (1), p.53-68
issn 0340-8744
1573-6911
language eng
recordid cdi_proquest_miscellaneous_1518248458
source PAIS Index; SpringerLink Journals - AutoHoldings
subjects Accuracy
Bayesian method
Econometrics
Economic crisis
Economic forecasts
Economic growth
Economic indicators
Economic models
Economic statistics
Economic theory
Economics
Economics and Finance
Estimates
European Integration
Federal Reserve monetary policy
Forecasting
Forecasting techniques
GDP
Gross Domestic Product
Industrial Organization
International Economics
Macroeconomics
Macroeconomics/Monetary Economics//Financial Economics
Original Paper
Pessimism
Polls & surveys
Public Finance
Seasonal variations
Seasonality
Stochastic processes
Studies
Survey data
Time series
Unemployment
title Bayesian averaging of classical estimates in forecasting macroeconomic indicators with application of business survey data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20averaging%20of%20classical%20estimates%20in%20forecasting%20macroeconomic%20indicators%20with%20application%20of%20business%20survey%20data&rft.jtitle=Empirica&rft.au=Bia%C5%82owolski,%20Piotr&rft.date=2014-02-01&rft.volume=41&rft.issue=1&rft.spage=53&rft.epage=68&rft.pages=53-68&rft.issn=0340-8744&rft.eissn=1573-6911&rft_id=info:doi/10.1007/s10663-013-9227-x&rft_dat=%3Cproquest_cross%3E3255957171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510034650&rft_id=info:pmid/&rfr_iscdi=true