Impact of an external electron acceptor on phosphorus mobility between water and sediments

•The present study assess the impact of an external electron acceptor on P fluxes.•Both SMFC tested were able to produce electricity.•SMFC operation increased metal bound P, Ca-bound P, and refractory P fractions.•The results indicate an important role of electroactive bacteria in the P cycling.•Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2014-01, Vol.151, p.419-423
Hauptverfasser: Martins, G., Peixoto, L., Teodorescu, S., Parpot, P., Nogueira, R., Brito, A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 423
container_issue
container_start_page 419
container_title Bioresource technology
container_volume 151
creator Martins, G.
Peixoto, L.
Teodorescu, S.
Parpot, P.
Nogueira, R.
Brito, A.G.
description •The present study assess the impact of an external electron acceptor on P fluxes.•Both SMFC tested were able to produce electricity.•SMFC operation increased metal bound P, Ca-bound P, and refractory P fractions.•The results indicate an important role of electroactive bacteria in the P cycling.•This study opens a new perspective for preventing P dissolution from sediments. The present work assessed the impact of an external electron acceptor on phosphorus fluxes between water and sediment interface. Microcosm experiments simulating a sediment microbial fuel cell (SMFC) were carried out and phosphorus was extracted by an optimized combination of three methods. Despite the low voltage recorded, ∼96mV (SMFC with carbon paper anode) and ∼146mV (SMFC with stainless steel scourer anode), corresponding to a power density of 1.15 and 0.13mW/m2, it was enough to produce an increase in the amounts of metal bound phosphorus (14% vs 11%), Ca-bound phosphorus (26% vs 23%), and refractory phosphorus (33% vs 28%). These results indicate an important role of electroactive bacteria in the phosphorus cycling and open a new perspective for preventing metal bound phosphorus dissolution from sediments.
doi_str_mv 10.1016/j.biortech.2013.10.048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1516756379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852413016283</els_id><sourcerecordid>1516756379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-7d5fe611322ec70c37b2e352e02730d633a8428262ad0b8f1aede1e70c4e7b0c3</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVpaTZpv0LQJdCLN6M_luxbQ2ibQCCX9NKLkOUx0WJbrqRNst--WnbTHIMQEqPfexrmEXLOYM2AqcvNuvMhZnSPaw5MlOIaZPOBrFijRcVbrT6SFbQKqqbm8oScprQBAME0_0xOuOQMVA0r8ud2WqzLNAzUzhRfMsbZjhRHdDmGmVrncMkh0nJfHkMqO24TnULnR593tMP8jDjTZ1uUxaKnCXs_4ZzTF_JpsGPCr8fzjPz--ePh-qa6u_91e311V7laQ650Xw-oGBOco9PghO44ipojcC2gV0LYRvKGK2576JqBWeyRYSEl6q7wZ-TbwXeJ4e8WUzaTTw7H0c4YtsmwmildK6Hb91GpZAutlFBQdUBdDClFHMwS_WTjzjAw-wjMxrxGYPYR7OslgiI8P_6x7Sbs_8teZ16AiyNgk7PjEO3sfHrjmrJ4uzeiBy46axcT8cmnbEuT5dlwrZUsyPcDgmW-Tx6jSc7j7EoEsQRo-uDfa_cfgPWyqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464909440</pqid></control><display><type>article</type><title>Impact of an external electron acceptor on phosphorus mobility between water and sediments</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Martins, G. ; Peixoto, L. ; Teodorescu, S. ; Parpot, P. ; Nogueira, R. ; Brito, A.G.</creator><creatorcontrib>Martins, G. ; Peixoto, L. ; Teodorescu, S. ; Parpot, P. ; Nogueira, R. ; Brito, A.G.</creatorcontrib><description>•The present study assess the impact of an external electron acceptor on P fluxes.•Both SMFC tested were able to produce electricity.•SMFC operation increased metal bound P, Ca-bound P, and refractory P fractions.•The results indicate an important role of electroactive bacteria in the P cycling.•This study opens a new perspective for preventing P dissolution from sediments. The present work assessed the impact of an external electron acceptor on phosphorus fluxes between water and sediment interface. Microcosm experiments simulating a sediment microbial fuel cell (SMFC) were carried out and phosphorus was extracted by an optimized combination of three methods. Despite the low voltage recorded, ∼96mV (SMFC with carbon paper anode) and ∼146mV (SMFC with stainless steel scourer anode), corresponding to a power density of 1.15 and 0.13mW/m2, it was enough to produce an increase in the amounts of metal bound phosphorus (14% vs 11%), Ca-bound phosphorus (26% vs 23%), and refractory phosphorus (33% vs 28%). These results indicate an important role of electroactive bacteria in the phosphorus cycling and open a new perspective for preventing metal bound phosphorus dissolution from sediments.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>EISSN: 0960-8524</identifier><identifier>DOI: 10.1016/j.biortech.2013.10.048</identifier><identifier>PMID: 24210650</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anodes ; Applied sciences ; Bacteria ; Bioelectric Energy Sources ; Biofuel production ; Biological and medical sciences ; Biotechnology ; Carbon ; Chemical Fractionation ; Density ; Electricity ; Electrodes ; Electrons ; Energy ; Eutrophication ; Exact sciences and technology ; Fluxes ; Fundamental and applied biological sciences. Psychology ; Geologic Sediments - chemistry ; Geologic Sediments - microbiology ; Industrial applications and implications. Economical aspects ; Iron and steel making ; Lake sediments ; Phosphorus ; Phosphorus - isolation &amp; purification ; Pollution ; Science &amp; Technology ; Sediment microbial fuel cell ; Sediments ; Time Factors ; Wastewater ; Wastewaters ; Water - chemistry ; Water treatment and pollution</subject><ispartof>Bioresource technology, 2014-01, Vol.151, p.419-423</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-7d5fe611322ec70c37b2e352e02730d633a8428262ad0b8f1aede1e70c4e7b0c3</citedby><cites>FETCH-LOGICAL-c570t-7d5fe611322ec70c37b2e352e02730d633a8428262ad0b8f1aede1e70c4e7b0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852413016283$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28282298$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24210650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martins, G.</creatorcontrib><creatorcontrib>Peixoto, L.</creatorcontrib><creatorcontrib>Teodorescu, S.</creatorcontrib><creatorcontrib>Parpot, P.</creatorcontrib><creatorcontrib>Nogueira, R.</creatorcontrib><creatorcontrib>Brito, A.G.</creatorcontrib><title>Impact of an external electron acceptor on phosphorus mobility between water and sediments</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>•The present study assess the impact of an external electron acceptor on P fluxes.•Both SMFC tested were able to produce electricity.•SMFC operation increased metal bound P, Ca-bound P, and refractory P fractions.•The results indicate an important role of electroactive bacteria in the P cycling.•This study opens a new perspective for preventing P dissolution from sediments. The present work assessed the impact of an external electron acceptor on phosphorus fluxes between water and sediment interface. Microcosm experiments simulating a sediment microbial fuel cell (SMFC) were carried out and phosphorus was extracted by an optimized combination of three methods. Despite the low voltage recorded, ∼96mV (SMFC with carbon paper anode) and ∼146mV (SMFC with stainless steel scourer anode), corresponding to a power density of 1.15 and 0.13mW/m2, it was enough to produce an increase in the amounts of metal bound phosphorus (14% vs 11%), Ca-bound phosphorus (26% vs 23%), and refractory phosphorus (33% vs 28%). These results indicate an important role of electroactive bacteria in the phosphorus cycling and open a new perspective for preventing metal bound phosphorus dissolution from sediments.</description><subject>Anodes</subject><subject>Applied sciences</subject><subject>Bacteria</subject><subject>Bioelectric Energy Sources</subject><subject>Biofuel production</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Chemical Fractionation</subject><subject>Density</subject><subject>Electricity</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Energy</subject><subject>Eutrophication</subject><subject>Exact sciences and technology</subject><subject>Fluxes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geologic Sediments - chemistry</subject><subject>Geologic Sediments - microbiology</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Iron and steel making</subject><subject>Lake sediments</subject><subject>Phosphorus</subject><subject>Phosphorus - isolation &amp; purification</subject><subject>Pollution</subject><subject>Science &amp; Technology</subject><subject>Sediment microbial fuel cell</subject><subject>Sediments</subject><subject>Time Factors</subject><subject>Wastewater</subject><subject>Wastewaters</subject><subject>Water - chemistry</subject><subject>Water treatment and pollution</subject><issn>0960-8524</issn><issn>1873-2976</issn><issn>0960-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9r3DAQxUVpaTZpv0LQJdCLN6M_luxbQ2ibQCCX9NKLkOUx0WJbrqRNst--WnbTHIMQEqPfexrmEXLOYM2AqcvNuvMhZnSPaw5MlOIaZPOBrFijRcVbrT6SFbQKqqbm8oScprQBAME0_0xOuOQMVA0r8ud2WqzLNAzUzhRfMsbZjhRHdDmGmVrncMkh0nJfHkMqO24TnULnR593tMP8jDjTZ1uUxaKnCXs_4ZzTF_JpsGPCr8fzjPz--ePh-qa6u_91e311V7laQ650Xw-oGBOco9PghO44ipojcC2gV0LYRvKGK2576JqBWeyRYSEl6q7wZ-TbwXeJ4e8WUzaTTw7H0c4YtsmwmildK6Hb91GpZAutlFBQdUBdDClFHMwS_WTjzjAw-wjMxrxGYPYR7OslgiI8P_6x7Sbs_8teZ16AiyNgk7PjEO3sfHrjmrJ4uzeiBy46axcT8cmnbEuT5dlwrZUsyPcDgmW-Tx6jSc7j7EoEsQRo-uDfa_cfgPWyqA</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Martins, G.</creator><creator>Peixoto, L.</creator><creator>Teodorescu, S.</creator><creator>Parpot, P.</creator><creator>Nogueira, R.</creator><creator>Brito, A.G.</creator><general>Elsevier Ltd</general><general>Elsevier 1</general><general>Elsevier BV</general><general>Elsevier</general><scope>RCLKO</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201401</creationdate><title>Impact of an external electron acceptor on phosphorus mobility between water and sediments</title><author>Martins, G. ; Peixoto, L. ; Teodorescu, S. ; Parpot, P. ; Nogueira, R. ; Brito, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-7d5fe611322ec70c37b2e352e02730d633a8428262ad0b8f1aede1e70c4e7b0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anodes</topic><topic>Applied sciences</topic><topic>Bacteria</topic><topic>Bioelectric Energy Sources</topic><topic>Biofuel production</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Chemical Fractionation</topic><topic>Density</topic><topic>Electricity</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Energy</topic><topic>Eutrophication</topic><topic>Exact sciences and technology</topic><topic>Fluxes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geologic Sediments - chemistry</topic><topic>Geologic Sediments - microbiology</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Iron and steel making</topic><topic>Lake sediments</topic><topic>Phosphorus</topic><topic>Phosphorus - isolation &amp; purification</topic><topic>Pollution</topic><topic>Science &amp; Technology</topic><topic>Sediment microbial fuel cell</topic><topic>Sediments</topic><topic>Time Factors</topic><topic>Wastewater</topic><topic>Wastewaters</topic><topic>Water - chemistry</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, G.</creatorcontrib><creatorcontrib>Peixoto, L.</creatorcontrib><creatorcontrib>Teodorescu, S.</creatorcontrib><creatorcontrib>Parpot, P.</creatorcontrib><creatorcontrib>Nogueira, R.</creatorcontrib><creatorcontrib>Brito, A.G.</creatorcontrib><collection>RCAAP open access repository</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, G.</au><au>Peixoto, L.</au><au>Teodorescu, S.</au><au>Parpot, P.</au><au>Nogueira, R.</au><au>Brito, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of an external electron acceptor on phosphorus mobility between water and sediments</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2014-01</date><risdate>2014</risdate><volume>151</volume><spage>419</spage><epage>423</epage><pages>419-423</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><eissn>0960-8524</eissn><abstract>•The present study assess the impact of an external electron acceptor on P fluxes.•Both SMFC tested were able to produce electricity.•SMFC operation increased metal bound P, Ca-bound P, and refractory P fractions.•The results indicate an important role of electroactive bacteria in the P cycling.•This study opens a new perspective for preventing P dissolution from sediments. The present work assessed the impact of an external electron acceptor on phosphorus fluxes between water and sediment interface. Microcosm experiments simulating a sediment microbial fuel cell (SMFC) were carried out and phosphorus was extracted by an optimized combination of three methods. Despite the low voltage recorded, ∼96mV (SMFC with carbon paper anode) and ∼146mV (SMFC with stainless steel scourer anode), corresponding to a power density of 1.15 and 0.13mW/m2, it was enough to produce an increase in the amounts of metal bound phosphorus (14% vs 11%), Ca-bound phosphorus (26% vs 23%), and refractory phosphorus (33% vs 28%). These results indicate an important role of electroactive bacteria in the phosphorus cycling and open a new perspective for preventing metal bound phosphorus dissolution from sediments.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24210650</pmid><doi>10.1016/j.biortech.2013.10.048</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2014-01, Vol.151, p.419-423
issn 0960-8524
1873-2976
0960-8524
language eng
recordid cdi_proquest_miscellaneous_1516756379
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anodes
Applied sciences
Bacteria
Bioelectric Energy Sources
Biofuel production
Biological and medical sciences
Biotechnology
Carbon
Chemical Fractionation
Density
Electricity
Electrodes
Electrons
Energy
Eutrophication
Exact sciences and technology
Fluxes
Fundamental and applied biological sciences. Psychology
Geologic Sediments - chemistry
Geologic Sediments - microbiology
Industrial applications and implications. Economical aspects
Iron and steel making
Lake sediments
Phosphorus
Phosphorus - isolation & purification
Pollution
Science & Technology
Sediment microbial fuel cell
Sediments
Time Factors
Wastewater
Wastewaters
Water - chemistry
Water treatment and pollution
title Impact of an external electron acceptor on phosphorus mobility between water and sediments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20an%20external%20electron%20acceptor%20on%20phosphorus%20mobility%20between%20water%20and%20sediments&rft.jtitle=Bioresource%20technology&rft.au=Martins,%20G.&rft.date=2014-01&rft.volume=151&rft.spage=419&rft.epage=423&rft.pages=419-423&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2013.10.048&rft_dat=%3Cproquest_cross%3E1516756379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464909440&rft_id=info:pmid/24210650&rft_els_id=S0960852413016283&rfr_iscdi=true