Impact of an external electron acceptor on phosphorus mobility between water and sediments
•The present study assess the impact of an external electron acceptor on P fluxes.•Both SMFC tested were able to produce electricity.•SMFC operation increased metal bound P, Ca-bound P, and refractory P fractions.•The results indicate an important role of electroactive bacteria in the P cycling.•Thi...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2014-01, Vol.151, p.419-423 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 423 |
---|---|
container_issue | |
container_start_page | 419 |
container_title | Bioresource technology |
container_volume | 151 |
creator | Martins, G. Peixoto, L. Teodorescu, S. Parpot, P. Nogueira, R. Brito, A.G. |
description | •The present study assess the impact of an external electron acceptor on P fluxes.•Both SMFC tested were able to produce electricity.•SMFC operation increased metal bound P, Ca-bound P, and refractory P fractions.•The results indicate an important role of electroactive bacteria in the P cycling.•This study opens a new perspective for preventing P dissolution from sediments.
The present work assessed the impact of an external electron acceptor on phosphorus fluxes between water and sediment interface. Microcosm experiments simulating a sediment microbial fuel cell (SMFC) were carried out and phosphorus was extracted by an optimized combination of three methods. Despite the low voltage recorded, ∼96mV (SMFC with carbon paper anode) and ∼146mV (SMFC with stainless steel scourer anode), corresponding to a power density of 1.15 and 0.13mW/m2, it was enough to produce an increase in the amounts of metal bound phosphorus (14% vs 11%), Ca-bound phosphorus (26% vs 23%), and refractory phosphorus (33% vs 28%). These results indicate an important role of electroactive bacteria in the phosphorus cycling and open a new perspective for preventing metal bound phosphorus dissolution from sediments. |
doi_str_mv | 10.1016/j.biortech.2013.10.048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1516756379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852413016283</els_id><sourcerecordid>1516756379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-7d5fe611322ec70c37b2e352e02730d633a8428262ad0b8f1aede1e70c4e7b0c3</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVpaTZpv0LQJdCLN6M_luxbQ2ibQCCX9NKLkOUx0WJbrqRNst--WnbTHIMQEqPfexrmEXLOYM2AqcvNuvMhZnSPaw5MlOIaZPOBrFijRcVbrT6SFbQKqqbm8oScprQBAME0_0xOuOQMVA0r8ud2WqzLNAzUzhRfMsbZjhRHdDmGmVrncMkh0nJfHkMqO24TnULnR593tMP8jDjTZ1uUxaKnCXs_4ZzTF_JpsGPCr8fzjPz--ePh-qa6u_91e311V7laQ650Xw-oGBOco9PghO44ipojcC2gV0LYRvKGK2576JqBWeyRYSEl6q7wZ-TbwXeJ4e8WUzaTTw7H0c4YtsmwmildK6Hb91GpZAutlFBQdUBdDClFHMwS_WTjzjAw-wjMxrxGYPYR7OslgiI8P_6x7Sbs_8teZ16AiyNgk7PjEO3sfHrjmrJ4uzeiBy46axcT8cmnbEuT5dlwrZUsyPcDgmW-Tx6jSc7j7EoEsQRo-uDfa_cfgPWyqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464909440</pqid></control><display><type>article</type><title>Impact of an external electron acceptor on phosphorus mobility between water and sediments</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Martins, G. ; Peixoto, L. ; Teodorescu, S. ; Parpot, P. ; Nogueira, R. ; Brito, A.G.</creator><creatorcontrib>Martins, G. ; Peixoto, L. ; Teodorescu, S. ; Parpot, P. ; Nogueira, R. ; Brito, A.G.</creatorcontrib><description>•The present study assess the impact of an external electron acceptor on P fluxes.•Both SMFC tested were able to produce electricity.•SMFC operation increased metal bound P, Ca-bound P, and refractory P fractions.•The results indicate an important role of electroactive bacteria in the P cycling.•This study opens a new perspective for preventing P dissolution from sediments.
The present work assessed the impact of an external electron acceptor on phosphorus fluxes between water and sediment interface. Microcosm experiments simulating a sediment microbial fuel cell (SMFC) were carried out and phosphorus was extracted by an optimized combination of three methods. Despite the low voltage recorded, ∼96mV (SMFC with carbon paper anode) and ∼146mV (SMFC with stainless steel scourer anode), corresponding to a power density of 1.15 and 0.13mW/m2, it was enough to produce an increase in the amounts of metal bound phosphorus (14% vs 11%), Ca-bound phosphorus (26% vs 23%), and refractory phosphorus (33% vs 28%). These results indicate an important role of electroactive bacteria in the phosphorus cycling and open a new perspective for preventing metal bound phosphorus dissolution from sediments.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>EISSN: 0960-8524</identifier><identifier>DOI: 10.1016/j.biortech.2013.10.048</identifier><identifier>PMID: 24210650</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Anodes ; Applied sciences ; Bacteria ; Bioelectric Energy Sources ; Biofuel production ; Biological and medical sciences ; Biotechnology ; Carbon ; Chemical Fractionation ; Density ; Electricity ; Electrodes ; Electrons ; Energy ; Eutrophication ; Exact sciences and technology ; Fluxes ; Fundamental and applied biological sciences. Psychology ; Geologic Sediments - chemistry ; Geologic Sediments - microbiology ; Industrial applications and implications. Economical aspects ; Iron and steel making ; Lake sediments ; Phosphorus ; Phosphorus - isolation & purification ; Pollution ; Science & Technology ; Sediment microbial fuel cell ; Sediments ; Time Factors ; Wastewater ; Wastewaters ; Water - chemistry ; Water treatment and pollution</subject><ispartof>Bioresource technology, 2014-01, Vol.151, p.419-423</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-7d5fe611322ec70c37b2e352e02730d633a8428262ad0b8f1aede1e70c4e7b0c3</citedby><cites>FETCH-LOGICAL-c570t-7d5fe611322ec70c37b2e352e02730d633a8428262ad0b8f1aede1e70c4e7b0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852413016283$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28282298$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24210650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martins, G.</creatorcontrib><creatorcontrib>Peixoto, L.</creatorcontrib><creatorcontrib>Teodorescu, S.</creatorcontrib><creatorcontrib>Parpot, P.</creatorcontrib><creatorcontrib>Nogueira, R.</creatorcontrib><creatorcontrib>Brito, A.G.</creatorcontrib><title>Impact of an external electron acceptor on phosphorus mobility between water and sediments</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>•The present study assess the impact of an external electron acceptor on P fluxes.•Both SMFC tested were able to produce electricity.•SMFC operation increased metal bound P, Ca-bound P, and refractory P fractions.•The results indicate an important role of electroactive bacteria in the P cycling.•This study opens a new perspective for preventing P dissolution from sediments.
The present work assessed the impact of an external electron acceptor on phosphorus fluxes between water and sediment interface. Microcosm experiments simulating a sediment microbial fuel cell (SMFC) were carried out and phosphorus was extracted by an optimized combination of three methods. Despite the low voltage recorded, ∼96mV (SMFC with carbon paper anode) and ∼146mV (SMFC with stainless steel scourer anode), corresponding to a power density of 1.15 and 0.13mW/m2, it was enough to produce an increase in the amounts of metal bound phosphorus (14% vs 11%), Ca-bound phosphorus (26% vs 23%), and refractory phosphorus (33% vs 28%). These results indicate an important role of electroactive bacteria in the phosphorus cycling and open a new perspective for preventing metal bound phosphorus dissolution from sediments.</description><subject>Anodes</subject><subject>Applied sciences</subject><subject>Bacteria</subject><subject>Bioelectric Energy Sources</subject><subject>Biofuel production</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Chemical Fractionation</subject><subject>Density</subject><subject>Electricity</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Energy</subject><subject>Eutrophication</subject><subject>Exact sciences and technology</subject><subject>Fluxes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geologic Sediments - chemistry</subject><subject>Geologic Sediments - microbiology</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Iron and steel making</subject><subject>Lake sediments</subject><subject>Phosphorus</subject><subject>Phosphorus - isolation & purification</subject><subject>Pollution</subject><subject>Science & Technology</subject><subject>Sediment microbial fuel cell</subject><subject>Sediments</subject><subject>Time Factors</subject><subject>Wastewater</subject><subject>Wastewaters</subject><subject>Water - chemistry</subject><subject>Water treatment and pollution</subject><issn>0960-8524</issn><issn>1873-2976</issn><issn>0960-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9r3DAQxUVpaTZpv0LQJdCLN6M_luxbQ2ibQCCX9NKLkOUx0WJbrqRNst--WnbTHIMQEqPfexrmEXLOYM2AqcvNuvMhZnSPaw5MlOIaZPOBrFijRcVbrT6SFbQKqqbm8oScprQBAME0_0xOuOQMVA0r8ud2WqzLNAzUzhRfMsbZjhRHdDmGmVrncMkh0nJfHkMqO24TnULnR593tMP8jDjTZ1uUxaKnCXs_4ZzTF_JpsGPCr8fzjPz--ePh-qa6u_91e311V7laQ650Xw-oGBOco9PghO44ipojcC2gV0LYRvKGK2576JqBWeyRYSEl6q7wZ-TbwXeJ4e8WUzaTTw7H0c4YtsmwmildK6Hb91GpZAutlFBQdUBdDClFHMwS_WTjzjAw-wjMxrxGYPYR7OslgiI8P_6x7Sbs_8teZ16AiyNgk7PjEO3sfHrjmrJ4uzeiBy46axcT8cmnbEuT5dlwrZUsyPcDgmW-Tx6jSc7j7EoEsQRo-uDfa_cfgPWyqA</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Martins, G.</creator><creator>Peixoto, L.</creator><creator>Teodorescu, S.</creator><creator>Parpot, P.</creator><creator>Nogueira, R.</creator><creator>Brito, A.G.</creator><general>Elsevier Ltd</general><general>Elsevier 1</general><general>Elsevier BV</general><general>Elsevier</general><scope>RCLKO</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201401</creationdate><title>Impact of an external electron acceptor on phosphorus mobility between water and sediments</title><author>Martins, G. ; Peixoto, L. ; Teodorescu, S. ; Parpot, P. ; Nogueira, R. ; Brito, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-7d5fe611322ec70c37b2e352e02730d633a8428262ad0b8f1aede1e70c4e7b0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anodes</topic><topic>Applied sciences</topic><topic>Bacteria</topic><topic>Bioelectric Energy Sources</topic><topic>Biofuel production</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Chemical Fractionation</topic><topic>Density</topic><topic>Electricity</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Energy</topic><topic>Eutrophication</topic><topic>Exact sciences and technology</topic><topic>Fluxes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geologic Sediments - chemistry</topic><topic>Geologic Sediments - microbiology</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Iron and steel making</topic><topic>Lake sediments</topic><topic>Phosphorus</topic><topic>Phosphorus - isolation & purification</topic><topic>Pollution</topic><topic>Science & Technology</topic><topic>Sediment microbial fuel cell</topic><topic>Sediments</topic><topic>Time Factors</topic><topic>Wastewater</topic><topic>Wastewaters</topic><topic>Water - chemistry</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martins, G.</creatorcontrib><creatorcontrib>Peixoto, L.</creatorcontrib><creatorcontrib>Teodorescu, S.</creatorcontrib><creatorcontrib>Parpot, P.</creatorcontrib><creatorcontrib>Nogueira, R.</creatorcontrib><creatorcontrib>Brito, A.G.</creatorcontrib><collection>RCAAP open access repository</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martins, G.</au><au>Peixoto, L.</au><au>Teodorescu, S.</au><au>Parpot, P.</au><au>Nogueira, R.</au><au>Brito, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of an external electron acceptor on phosphorus mobility between water and sediments</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2014-01</date><risdate>2014</risdate><volume>151</volume><spage>419</spage><epage>423</epage><pages>419-423</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><eissn>0960-8524</eissn><abstract>•The present study assess the impact of an external electron acceptor on P fluxes.•Both SMFC tested were able to produce electricity.•SMFC operation increased metal bound P, Ca-bound P, and refractory P fractions.•The results indicate an important role of electroactive bacteria in the P cycling.•This study opens a new perspective for preventing P dissolution from sediments.
The present work assessed the impact of an external electron acceptor on phosphorus fluxes between water and sediment interface. Microcosm experiments simulating a sediment microbial fuel cell (SMFC) were carried out and phosphorus was extracted by an optimized combination of three methods. Despite the low voltage recorded, ∼96mV (SMFC with carbon paper anode) and ∼146mV (SMFC with stainless steel scourer anode), corresponding to a power density of 1.15 and 0.13mW/m2, it was enough to produce an increase in the amounts of metal bound phosphorus (14% vs 11%), Ca-bound phosphorus (26% vs 23%), and refractory phosphorus (33% vs 28%). These results indicate an important role of electroactive bacteria in the phosphorus cycling and open a new perspective for preventing metal bound phosphorus dissolution from sediments.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24210650</pmid><doi>10.1016/j.biortech.2013.10.048</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2014-01, Vol.151, p.419-423 |
issn | 0960-8524 1873-2976 0960-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_1516756379 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Anodes Applied sciences Bacteria Bioelectric Energy Sources Biofuel production Biological and medical sciences Biotechnology Carbon Chemical Fractionation Density Electricity Electrodes Electrons Energy Eutrophication Exact sciences and technology Fluxes Fundamental and applied biological sciences. Psychology Geologic Sediments - chemistry Geologic Sediments - microbiology Industrial applications and implications. Economical aspects Iron and steel making Lake sediments Phosphorus Phosphorus - isolation & purification Pollution Science & Technology Sediment microbial fuel cell Sediments Time Factors Wastewater Wastewaters Water - chemistry Water treatment and pollution |
title | Impact of an external electron acceptor on phosphorus mobility between water and sediments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20an%20external%20electron%20acceptor%20on%20phosphorus%20mobility%20between%20water%20and%20sediments&rft.jtitle=Bioresource%20technology&rft.au=Martins,%20G.&rft.date=2014-01&rft.volume=151&rft.spage=419&rft.epage=423&rft.pages=419-423&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2013.10.048&rft_dat=%3Cproquest_cross%3E1516756379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464909440&rft_id=info:pmid/24210650&rft_els_id=S0960852413016283&rfr_iscdi=true |