The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone
Through study of observations and coupled climate simulations, it is argued that the mean position of the Inter-Tropical Convergence Zone (ITCZ) north of the equator is a consequence of a northwards heat transport across the equator by ocean circulation. Observations suggest that the hemispheric net...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2014-04, Vol.42 (7-8), p.1967-1979 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1979 |
---|---|
container_issue | 7-8 |
container_start_page | 1967 |
container_title | Climate dynamics |
container_volume | 42 |
creator | Marshall, J. Donohoe, A. Ferreira, D. McGee, D. |
description | Through study of observations and coupled climate simulations, it is argued that the mean position of the Inter-Tropical Convergence Zone (ITCZ) north of the equator is a consequence of a northwards heat transport across the equator by ocean circulation. Observations suggest that the hemispheric net radiative forcing of climate at the top of the atmosphere is almost perfectly symmetric about the equator, and so the total (atmosphere plus ocean) heat transport across the equator is small (order 0.2 PW northwards). Due to the Atlantic ocean’s meridional overturning circulation, however, the ocean carries significantly more heat northwards across the equator (order 0.4 PW) than does the coupled system. There are two primary consequences. First, atmospheric heat transport is southwards across the equator to compensate (0.2 PW southwards), resulting in the ITCZ being displaced north of the equator. Second, the atmosphere, and indeed the ocean, is slightly warmer (by perhaps 2 °C) in the northern hemisphere than in the southern hemisphere. This leads to the northern hemisphere emitting slightly more outgoing longwave radiation than the southern hemisphere by virtue of its relative warmth, supporting the small northward heat transport by the coupled system across the equator. To conclude, the coupled nature of the problem is illustrated through study of atmosphere–ocean–ice simulations in the idealized setting of an aquaplanet, resolving the key processes at work. |
doi_str_mv | 10.1007/s00382-013-1767-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1516754504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A380747273</galeid><sourcerecordid>A380747273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-5da95a74dadda6fcab523da03e0b286840778ea4a0571458f0549160d6dd48a83</originalsourceid><addsrcrecordid>eNp1kcGKFDEQhhtRcFx9AG8Nouih16STdNLHZVB3YEHQ0YOXUJuu7snSk4xJWnRPvoavt09i2l5kR5AcAvV_f1FVf1E8peSUEiJfR0KYqitCWUVlI6vre8WKcpYrquX3ixVpGamkkOJh8SjGK0Iob2S9Kj5vd1h6g-Bufv6KZfAjltaVEVOybihTVvdZLA8-2mS9K33_p7hxCUO1Df5gDYzl2rtvGAZ0Bssv3uHj4kEPY8Qnt_9J8entm-36vLp4_26zPruojGjrVIkOWgGSd9B10PQGLkXNOiAMyWWtGsWJlAqBAxGScqF6InhLG9I1XccVKHZSvFz6HoL_OmFMem-jwXEEh36KmgraSMEF4Rl99g965afg8nQzRWnTMs4ydbpQA4yoret9CmDy63BvTd6st7l-xhSRXNZyNrw6MmQm4fc0wBSj3nz8cMy-uMPuEMa0i36c5sPGY5AuoAk-xoC9PgS7h_BDU6LnvPWSt8556zlvfZ09z2_3g5gj6QM4Y-NfY61Eq0hDM1cvXMySGzDcucN_m_8GAB24eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1511169343</pqid></control><display><type>article</type><title>The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone</title><source>SpringerLink Journals - AutoHoldings</source><creator>Marshall, J. ; Donohoe, A. ; Ferreira, D. ; McGee, D.</creator><creatorcontrib>Marshall, J. ; Donohoe, A. ; Ferreira, D. ; McGee, D.</creatorcontrib><description>Through study of observations and coupled climate simulations, it is argued that the mean position of the Inter-Tropical Convergence Zone (ITCZ) north of the equator is a consequence of a northwards heat transport across the equator by ocean circulation. Observations suggest that the hemispheric net radiative forcing of climate at the top of the atmosphere is almost perfectly symmetric about the equator, and so the total (atmosphere plus ocean) heat transport across the equator is small (order 0.2 PW northwards). Due to the Atlantic ocean’s meridional overturning circulation, however, the ocean carries significantly more heat northwards across the equator (order 0.4 PW) than does the coupled system. There are two primary consequences. First, atmospheric heat transport is southwards across the equator to compensate (0.2 PW southwards), resulting in the ITCZ being displaced north of the equator. Second, the atmosphere, and indeed the ocean, is slightly warmer (by perhaps 2 °C) in the northern hemisphere than in the southern hemisphere. This leads to the northern hemisphere emitting slightly more outgoing longwave radiation than the southern hemisphere by virtue of its relative warmth, supporting the small northward heat transport by the coupled system across the equator. To conclude, the coupled nature of the problem is illustrated through study of atmosphere–ocean–ice simulations in the idealized setting of an aquaplanet, resolving the key processes at work.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-013-1767-z</identifier><identifier>CODEN: CLDYEM</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Atmosphere ; Atmospheric models ; Climate ; Climatology ; Climatology. Bioclimatology. Climate change ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Equator ; Exact sciences and technology ; External geophysics ; Geophysics/Geodesy ; Heat transport ; Intertropical convergence zone ; Marine ; Meteorology ; Ocean circulation ; Ocean currents ; Ocean-atmosphere interaction ; Oceanography ; Thermohaline circulation ; Water circulation</subject><ispartof>Climate dynamics, 2014-04, Vol.42 (7-8), p.1967-1979</ispartof><rights>The Author(s) 2013</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-5da95a74dadda6fcab523da03e0b286840778ea4a0571458f0549160d6dd48a83</citedby><cites>FETCH-LOGICAL-c592t-5da95a74dadda6fcab523da03e0b286840778ea4a0571458f0549160d6dd48a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-013-1767-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-013-1767-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28598061$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marshall, J.</creatorcontrib><creatorcontrib>Donohoe, A.</creatorcontrib><creatorcontrib>Ferreira, D.</creatorcontrib><creatorcontrib>McGee, D.</creatorcontrib><title>The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Through study of observations and coupled climate simulations, it is argued that the mean position of the Inter-Tropical Convergence Zone (ITCZ) north of the equator is a consequence of a northwards heat transport across the equator by ocean circulation. Observations suggest that the hemispheric net radiative forcing of climate at the top of the atmosphere is almost perfectly symmetric about the equator, and so the total (atmosphere plus ocean) heat transport across the equator is small (order 0.2 PW northwards). Due to the Atlantic ocean’s meridional overturning circulation, however, the ocean carries significantly more heat northwards across the equator (order 0.4 PW) than does the coupled system. There are two primary consequences. First, atmospheric heat transport is southwards across the equator to compensate (0.2 PW southwards), resulting in the ITCZ being displaced north of the equator. Second, the atmosphere, and indeed the ocean, is slightly warmer (by perhaps 2 °C) in the northern hemisphere than in the southern hemisphere. This leads to the northern hemisphere emitting slightly more outgoing longwave radiation than the southern hemisphere by virtue of its relative warmth, supporting the small northward heat transport by the coupled system across the equator. To conclude, the coupled nature of the problem is illustrated through study of atmosphere–ocean–ice simulations in the idealized setting of an aquaplanet, resolving the key processes at work.</description><subject>Analysis</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Climate</subject><subject>Climatology</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Equator</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Heat transport</subject><subject>Intertropical convergence zone</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Ocean circulation</subject><subject>Ocean currents</subject><subject>Ocean-atmosphere interaction</subject><subject>Oceanography</subject><subject>Thermohaline circulation</subject><subject>Water circulation</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kcGKFDEQhhtRcFx9AG8Nouih16STdNLHZVB3YEHQ0YOXUJuu7snSk4xJWnRPvoavt09i2l5kR5AcAvV_f1FVf1E8peSUEiJfR0KYqitCWUVlI6vre8WKcpYrquX3ixVpGamkkOJh8SjGK0Iob2S9Kj5vd1h6g-Bufv6KZfAjltaVEVOybihTVvdZLA8-2mS9K33_p7hxCUO1Df5gDYzl2rtvGAZ0Bssv3uHj4kEPY8Qnt_9J8entm-36vLp4_26zPruojGjrVIkOWgGSd9B10PQGLkXNOiAMyWWtGsWJlAqBAxGScqF6InhLG9I1XccVKHZSvFz6HoL_OmFMem-jwXEEh36KmgraSMEF4Rl99g965afg8nQzRWnTMs4ydbpQA4yoret9CmDy63BvTd6st7l-xhSRXNZyNrw6MmQm4fc0wBSj3nz8cMy-uMPuEMa0i36c5sPGY5AuoAk-xoC9PgS7h_BDU6LnvPWSt8556zlvfZ09z2_3g5gj6QM4Y-NfY61Eq0hDM1cvXMySGzDcucN_m_8GAB24eg</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Marshall, J.</creator><creator>Donohoe, A.</creator><creator>Ferreira, D.</creator><creator>McGee, D.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20140401</creationdate><title>The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone</title><author>Marshall, J. ; Donohoe, A. ; Ferreira, D. ; McGee, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-5da95a74dadda6fcab523da03e0b286840778ea4a0571458f0549160d6dd48a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Climate</topic><topic>Climatology</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Equator</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Heat transport</topic><topic>Intertropical convergence zone</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Ocean circulation</topic><topic>Ocean currents</topic><topic>Ocean-atmosphere interaction</topic><topic>Oceanography</topic><topic>Thermohaline circulation</topic><topic>Water circulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marshall, J.</creatorcontrib><creatorcontrib>Donohoe, A.</creatorcontrib><creatorcontrib>Ferreira, D.</creatorcontrib><creatorcontrib>McGee, D.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marshall, J.</au><au>Donohoe, A.</au><au>Ferreira, D.</au><au>McGee, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>42</volume><issue>7-8</issue><spage>1967</spage><epage>1979</epage><pages>1967-1979</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><coden>CLDYEM</coden><abstract>Through study of observations and coupled climate simulations, it is argued that the mean position of the Inter-Tropical Convergence Zone (ITCZ) north of the equator is a consequence of a northwards heat transport across the equator by ocean circulation. Observations suggest that the hemispheric net radiative forcing of climate at the top of the atmosphere is almost perfectly symmetric about the equator, and so the total (atmosphere plus ocean) heat transport across the equator is small (order 0.2 PW northwards). Due to the Atlantic ocean’s meridional overturning circulation, however, the ocean carries significantly more heat northwards across the equator (order 0.4 PW) than does the coupled system. There are two primary consequences. First, atmospheric heat transport is southwards across the equator to compensate (0.2 PW southwards), resulting in the ITCZ being displaced north of the equator. Second, the atmosphere, and indeed the ocean, is slightly warmer (by perhaps 2 °C) in the northern hemisphere than in the southern hemisphere. This leads to the northern hemisphere emitting slightly more outgoing longwave radiation than the southern hemisphere by virtue of its relative warmth, supporting the small northward heat transport by the coupled system across the equator. To conclude, the coupled nature of the problem is illustrated through study of atmosphere–ocean–ice simulations in the idealized setting of an aquaplanet, resolving the key processes at work.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-013-1767-z</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2014-04, Vol.42 (7-8), p.1967-1979 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_miscellaneous_1516754504 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Atmosphere Atmospheric models Climate Climatology Climatology. Bioclimatology. Climate change Earth and Environmental Science Earth Sciences Earth, ocean, space Equator Exact sciences and technology External geophysics Geophysics/Geodesy Heat transport Intertropical convergence zone Marine Meteorology Ocean circulation Ocean currents Ocean-atmosphere interaction Oceanography Thermohaline circulation Water circulation |
title | The ocean’s role in setting the mean position of the Inter-Tropical Convergence Zone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ocean%E2%80%99s%20role%20in%20setting%20the%20mean%20position%20of%20the%20Inter-Tropical%20Convergence%20Zone&rft.jtitle=Climate%20dynamics&rft.au=Marshall,%20J.&rft.date=2014-04-01&rft.volume=42&rft.issue=7-8&rft.spage=1967&rft.epage=1979&rft.pages=1967-1979&rft.issn=0930-7575&rft.eissn=1432-0894&rft.coden=CLDYEM&rft_id=info:doi/10.1007/s00382-013-1767-z&rft_dat=%3Cgale_proqu%3EA380747273%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1511169343&rft_id=info:pmid/&rft_galeid=A380747273&rfr_iscdi=true |