A 1D mathematical model for a microbial fuel cell
MFCs (microbial fuel cells) are a promising sustainable technology to meet increasing energy needs, especially using wastewaters as substrates, since they can generate electricity and accomplish wastewater treatment simultaneously. The MFC is a complex system involving bio-electrochemical processes,...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2013-11, Vol.61, p.463-471 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 471 |
---|---|
container_issue | |
container_start_page | 463 |
container_title | Energy (Oxford) |
container_volume | 61 |
creator | Oliveira, V.B. Simões, M. Melo, L.F. Pinto, A.M.F.R. |
description | MFCs (microbial fuel cells) are a promising sustainable technology to meet increasing energy needs, especially using wastewaters as substrates, since they can generate electricity and accomplish wastewater treatment simultaneously. The MFC is a complex system involving bio-electrochemical processes, charge, mass and energy transfer. In this work, a steady state, one-dimensional model accounting for coupled heat, charge and mass transfer, and biofilm formation, along with the electrochemical reactions occurring in the MFC, similar to the ones developed for chemical fuel cells, is presented. The model predicts the correct trends for the influence of current density on the cell voltage, as well as, the influence of substrate concentration and temperature on the MFC performance and biofilm thickness. The model outputs are the temperature and concentration profiles and the biofilm thickness. The proposed model is rapidly and easily implemented and is therefore suitable for inclusion in real-time system level MFC calculations.
•A model coupling biofilm formation, heat, charger and mass transfer is presented.•The effect of operating and design parameters on MFC performance can be predicted.•The model predicts the temperature profiles and the biofilm thickness.•This model is useful to improve MFC understanding involving simple numeric tools.•This easily to implement model is suitable for use in real-time MFC simulations. |
doi_str_mv | 10.1016/j.energy.2013.08.055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1516752593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544213007445</els_id><sourcerecordid>1516752593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-8ac24a80f008092149a3bc1d8b883827bb2d2ccb781d9f684ca2b1dfc78709d33</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRbVooenjDwr1ptCN3ZFk2dKmENInBLposxayHqmCHaeSU8jfV8ahy25GMJyZuToIXWMoMODqflPYrQ3rQ0EA0wJ4AYydoBnQCnJWluQMnce4AQDGhZghPM_wY9ap4cum4rVqs643ts1cHzKVdV6HvvGp6_apqW3bXqJTp9por47vBVo9P30uXvPl-8vbYr7MNRV0yLnSpFQcHAAHQXApFG00NrzhnHJSNw0xROum5tgIV_FSK9Jg43TNaxCG0gt0N-3dhf57b-MgOx_HAGpr-32UmOGqZoSJES0nNIWNMVgnd8F3KhwkBjlakRs5WZGjFQlcJitp7PZ4QcX0cRfUVvv4N0tqARXHOHE3E-dUL9U6JGb1kRZVyWLFMNSJeJgIm4T8eBtk1N5utTU-WD1I0_v_o_wCK5KDBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516752593</pqid></control><display><type>article</type><title>A 1D mathematical model for a microbial fuel cell</title><source>Access via ScienceDirect (Elsevier)</source><creator>Oliveira, V.B. ; Simões, M. ; Melo, L.F. ; Pinto, A.M.F.R.</creator><creatorcontrib>Oliveira, V.B. ; Simões, M. ; Melo, L.F. ; Pinto, A.M.F.R.</creatorcontrib><description>MFCs (microbial fuel cells) are a promising sustainable technology to meet increasing energy needs, especially using wastewaters as substrates, since they can generate electricity and accomplish wastewater treatment simultaneously. The MFC is a complex system involving bio-electrochemical processes, charge, mass and energy transfer. In this work, a steady state, one-dimensional model accounting for coupled heat, charge and mass transfer, and biofilm formation, along with the electrochemical reactions occurring in the MFC, similar to the ones developed for chemical fuel cells, is presented. The model predicts the correct trends for the influence of current density on the cell voltage, as well as, the influence of substrate concentration and temperature on the MFC performance and biofilm thickness. The model outputs are the temperature and concentration profiles and the biofilm thickness. The proposed model is rapidly and easily implemented and is therefore suitable for inclusion in real-time system level MFC calculations.
•A model coupling biofilm formation, heat, charger and mass transfer is presented.•The effect of operating and design parameters on MFC performance can be predicted.•The model predicts the temperature profiles and the biofilm thickness.•This model is useful to improve MFC understanding involving simple numeric tools.•This easily to implement model is suitable for use in real-time MFC simulations.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2013.08.055</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Bio-electrochemical ; Biochemical fuel cells ; Biofilm ; Biofilms ; biological models ; Charge ; Charge transfer ; Electric charge ; electricity ; electrochemistry ; Energy ; energy transfer ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; heat ; Heat and mass transfer ; mass transfer ; Mathematical modelling ; Mathematical models ; Microbial fuel cells ; Microorganisms ; Simulation ; sustainable technology ; temperature ; Waste water ; wastewater ; wastewater treatment</subject><ispartof>Energy (Oxford), 2013-11, Vol.61, p.463-471</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-8ac24a80f008092149a3bc1d8b883827bb2d2ccb781d9f684ca2b1dfc78709d33</citedby><cites>FETCH-LOGICAL-c393t-8ac24a80f008092149a3bc1d8b883827bb2d2ccb781d9f684ca2b1dfc78709d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2013.08.055$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27906811$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliveira, V.B.</creatorcontrib><creatorcontrib>Simões, M.</creatorcontrib><creatorcontrib>Melo, L.F.</creatorcontrib><creatorcontrib>Pinto, A.M.F.R.</creatorcontrib><title>A 1D mathematical model for a microbial fuel cell</title><title>Energy (Oxford)</title><description>MFCs (microbial fuel cells) are a promising sustainable technology to meet increasing energy needs, especially using wastewaters as substrates, since they can generate electricity and accomplish wastewater treatment simultaneously. The MFC is a complex system involving bio-electrochemical processes, charge, mass and energy transfer. In this work, a steady state, one-dimensional model accounting for coupled heat, charge and mass transfer, and biofilm formation, along with the electrochemical reactions occurring in the MFC, similar to the ones developed for chemical fuel cells, is presented. The model predicts the correct trends for the influence of current density on the cell voltage, as well as, the influence of substrate concentration and temperature on the MFC performance and biofilm thickness. The model outputs are the temperature and concentration profiles and the biofilm thickness. The proposed model is rapidly and easily implemented and is therefore suitable for inclusion in real-time system level MFC calculations.
•A model coupling biofilm formation, heat, charger and mass transfer is presented.•The effect of operating and design parameters on MFC performance can be predicted.•The model predicts the temperature profiles and the biofilm thickness.•This model is useful to improve MFC understanding involving simple numeric tools.•This easily to implement model is suitable for use in real-time MFC simulations.</description><subject>Applied sciences</subject><subject>Bio-electrochemical</subject><subject>Biochemical fuel cells</subject><subject>Biofilm</subject><subject>Biofilms</subject><subject>biological models</subject><subject>Charge</subject><subject>Charge transfer</subject><subject>Electric charge</subject><subject>electricity</subject><subject>electrochemistry</subject><subject>Energy</subject><subject>energy transfer</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>heat</subject><subject>Heat and mass transfer</subject><subject>mass transfer</subject><subject>Mathematical modelling</subject><subject>Mathematical models</subject><subject>Microbial fuel cells</subject><subject>Microorganisms</subject><subject>Simulation</subject><subject>sustainable technology</subject><subject>temperature</subject><subject>Waste water</subject><subject>wastewater</subject><subject>wastewater treatment</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRbVooenjDwr1ptCN3ZFk2dKmENInBLposxayHqmCHaeSU8jfV8ahy25GMJyZuToIXWMoMODqflPYrQ3rQ0EA0wJ4AYydoBnQCnJWluQMnce4AQDGhZghPM_wY9ap4cum4rVqs643ts1cHzKVdV6HvvGp6_apqW3bXqJTp9por47vBVo9P30uXvPl-8vbYr7MNRV0yLnSpFQcHAAHQXApFG00NrzhnHJSNw0xROum5tgIV_FSK9Jg43TNaxCG0gt0N-3dhf57b-MgOx_HAGpr-32UmOGqZoSJES0nNIWNMVgnd8F3KhwkBjlakRs5WZGjFQlcJitp7PZ4QcX0cRfUVvv4N0tqARXHOHE3E-dUL9U6JGb1kRZVyWLFMNSJeJgIm4T8eBtk1N5utTU-WD1I0_v_o_wCK5KDBA</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Oliveira, V.B.</creator><creator>Simões, M.</creator><creator>Melo, L.F.</creator><creator>Pinto, A.M.F.R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>A 1D mathematical model for a microbial fuel cell</title><author>Oliveira, V.B. ; Simões, M. ; Melo, L.F. ; Pinto, A.M.F.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-8ac24a80f008092149a3bc1d8b883827bb2d2ccb781d9f684ca2b1dfc78709d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Bio-electrochemical</topic><topic>Biochemical fuel cells</topic><topic>Biofilm</topic><topic>Biofilms</topic><topic>biological models</topic><topic>Charge</topic><topic>Charge transfer</topic><topic>Electric charge</topic><topic>electricity</topic><topic>electrochemistry</topic><topic>Energy</topic><topic>energy transfer</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>heat</topic><topic>Heat and mass transfer</topic><topic>mass transfer</topic><topic>Mathematical modelling</topic><topic>Mathematical models</topic><topic>Microbial fuel cells</topic><topic>Microorganisms</topic><topic>Simulation</topic><topic>sustainable technology</topic><topic>temperature</topic><topic>Waste water</topic><topic>wastewater</topic><topic>wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, V.B.</creatorcontrib><creatorcontrib>Simões, M.</creatorcontrib><creatorcontrib>Melo, L.F.</creatorcontrib><creatorcontrib>Pinto, A.M.F.R.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliveira, V.B.</au><au>Simões, M.</au><au>Melo, L.F.</au><au>Pinto, A.M.F.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 1D mathematical model for a microbial fuel cell</atitle><jtitle>Energy (Oxford)</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>61</volume><spage>463</spage><epage>471</epage><pages>463-471</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>MFCs (microbial fuel cells) are a promising sustainable technology to meet increasing energy needs, especially using wastewaters as substrates, since they can generate electricity and accomplish wastewater treatment simultaneously. The MFC is a complex system involving bio-electrochemical processes, charge, mass and energy transfer. In this work, a steady state, one-dimensional model accounting for coupled heat, charge and mass transfer, and biofilm formation, along with the electrochemical reactions occurring in the MFC, similar to the ones developed for chemical fuel cells, is presented. The model predicts the correct trends for the influence of current density on the cell voltage, as well as, the influence of substrate concentration and temperature on the MFC performance and biofilm thickness. The model outputs are the temperature and concentration profiles and the biofilm thickness. The proposed model is rapidly and easily implemented and is therefore suitable for inclusion in real-time system level MFC calculations.
•A model coupling biofilm formation, heat, charger and mass transfer is presented.•The effect of operating and design parameters on MFC performance can be predicted.•The model predicts the temperature profiles and the biofilm thickness.•This model is useful to improve MFC understanding involving simple numeric tools.•This easily to implement model is suitable for use in real-time MFC simulations.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2013.08.055</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2013-11, Vol.61, p.463-471 |
issn | 0360-5442 |
language | eng |
recordid | cdi_proquest_miscellaneous_1516752593 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Bio-electrochemical Biochemical fuel cells Biofilm Biofilms biological models Charge Charge transfer Electric charge electricity electrochemistry Energy energy transfer Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells heat Heat and mass transfer mass transfer Mathematical modelling Mathematical models Microbial fuel cells Microorganisms Simulation sustainable technology temperature Waste water wastewater wastewater treatment |
title | A 1D mathematical model for a microbial fuel cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%201D%20mathematical%20model%20for%20a%20microbial%20fuel%20cell&rft.jtitle=Energy%20(Oxford)&rft.au=Oliveira,%20V.B.&rft.date=2013-11-01&rft.volume=61&rft.spage=463&rft.epage=471&rft.pages=463-471&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2013.08.055&rft_dat=%3Cproquest_cross%3E1516752593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1516752593&rft_id=info:pmid/&rft_els_id=S0360544213007445&rfr_iscdi=true |