A 1D mathematical model for a microbial fuel cell

MFCs (microbial fuel cells) are a promising sustainable technology to meet increasing energy needs, especially using wastewaters as substrates, since they can generate electricity and accomplish wastewater treatment simultaneously. The MFC is a complex system involving bio-electrochemical processes,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2013-11, Vol.61, p.463-471
Hauptverfasser: Oliveira, V.B., Simões, M., Melo, L.F., Pinto, A.M.F.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 471
container_issue
container_start_page 463
container_title Energy (Oxford)
container_volume 61
creator Oliveira, V.B.
Simões, M.
Melo, L.F.
Pinto, A.M.F.R.
description MFCs (microbial fuel cells) are a promising sustainable technology to meet increasing energy needs, especially using wastewaters as substrates, since they can generate electricity and accomplish wastewater treatment simultaneously. The MFC is a complex system involving bio-electrochemical processes, charge, mass and energy transfer. In this work, a steady state, one-dimensional model accounting for coupled heat, charge and mass transfer, and biofilm formation, along with the electrochemical reactions occurring in the MFC, similar to the ones developed for chemical fuel cells, is presented. The model predicts the correct trends for the influence of current density on the cell voltage, as well as, the influence of substrate concentration and temperature on the MFC performance and biofilm thickness. The model outputs are the temperature and concentration profiles and the biofilm thickness. The proposed model is rapidly and easily implemented and is therefore suitable for inclusion in real-time system level MFC calculations. •A model coupling biofilm formation, heat, charger and mass transfer is presented.•The effect of operating and design parameters on MFC performance can be predicted.•The model predicts the temperature profiles and the biofilm thickness.•This model is useful to improve MFC understanding involving simple numeric tools.•This easily to implement model is suitable for use in real-time MFC simulations.
doi_str_mv 10.1016/j.energy.2013.08.055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1516752593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544213007445</els_id><sourcerecordid>1516752593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-8ac24a80f008092149a3bc1d8b883827bb2d2ccb781d9f684ca2b1dfc78709d33</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRbVooenjDwr1ptCN3ZFk2dKmENInBLposxayHqmCHaeSU8jfV8ahy25GMJyZuToIXWMoMODqflPYrQ3rQ0EA0wJ4AYydoBnQCnJWluQMnce4AQDGhZghPM_wY9ap4cum4rVqs643ts1cHzKVdV6HvvGp6_apqW3bXqJTp9por47vBVo9P30uXvPl-8vbYr7MNRV0yLnSpFQcHAAHQXApFG00NrzhnHJSNw0xROum5tgIV_FSK9Jg43TNaxCG0gt0N-3dhf57b-MgOx_HAGpr-32UmOGqZoSJES0nNIWNMVgnd8F3KhwkBjlakRs5WZGjFQlcJitp7PZ4QcX0cRfUVvv4N0tqARXHOHE3E-dUL9U6JGb1kRZVyWLFMNSJeJgIm4T8eBtk1N5utTU-WD1I0_v_o_wCK5KDBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1516752593</pqid></control><display><type>article</type><title>A 1D mathematical model for a microbial fuel cell</title><source>Access via ScienceDirect (Elsevier)</source><creator>Oliveira, V.B. ; Simões, M. ; Melo, L.F. ; Pinto, A.M.F.R.</creator><creatorcontrib>Oliveira, V.B. ; Simões, M. ; Melo, L.F. ; Pinto, A.M.F.R.</creatorcontrib><description>MFCs (microbial fuel cells) are a promising sustainable technology to meet increasing energy needs, especially using wastewaters as substrates, since they can generate electricity and accomplish wastewater treatment simultaneously. The MFC is a complex system involving bio-electrochemical processes, charge, mass and energy transfer. In this work, a steady state, one-dimensional model accounting for coupled heat, charge and mass transfer, and biofilm formation, along with the electrochemical reactions occurring in the MFC, similar to the ones developed for chemical fuel cells, is presented. The model predicts the correct trends for the influence of current density on the cell voltage, as well as, the influence of substrate concentration and temperature on the MFC performance and biofilm thickness. The model outputs are the temperature and concentration profiles and the biofilm thickness. The proposed model is rapidly and easily implemented and is therefore suitable for inclusion in real-time system level MFC calculations. •A model coupling biofilm formation, heat, charger and mass transfer is presented.•The effect of operating and design parameters on MFC performance can be predicted.•The model predicts the temperature profiles and the biofilm thickness.•This model is useful to improve MFC understanding involving simple numeric tools.•This easily to implement model is suitable for use in real-time MFC simulations.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2013.08.055</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Bio-electrochemical ; Biochemical fuel cells ; Biofilm ; Biofilms ; biological models ; Charge ; Charge transfer ; Electric charge ; electricity ; electrochemistry ; Energy ; energy transfer ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; heat ; Heat and mass transfer ; mass transfer ; Mathematical modelling ; Mathematical models ; Microbial fuel cells ; Microorganisms ; Simulation ; sustainable technology ; temperature ; Waste water ; wastewater ; wastewater treatment</subject><ispartof>Energy (Oxford), 2013-11, Vol.61, p.463-471</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-8ac24a80f008092149a3bc1d8b883827bb2d2ccb781d9f684ca2b1dfc78709d33</citedby><cites>FETCH-LOGICAL-c393t-8ac24a80f008092149a3bc1d8b883827bb2d2ccb781d9f684ca2b1dfc78709d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2013.08.055$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27906811$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliveira, V.B.</creatorcontrib><creatorcontrib>Simões, M.</creatorcontrib><creatorcontrib>Melo, L.F.</creatorcontrib><creatorcontrib>Pinto, A.M.F.R.</creatorcontrib><title>A 1D mathematical model for a microbial fuel cell</title><title>Energy (Oxford)</title><description>MFCs (microbial fuel cells) are a promising sustainable technology to meet increasing energy needs, especially using wastewaters as substrates, since they can generate electricity and accomplish wastewater treatment simultaneously. The MFC is a complex system involving bio-electrochemical processes, charge, mass and energy transfer. In this work, a steady state, one-dimensional model accounting for coupled heat, charge and mass transfer, and biofilm formation, along with the electrochemical reactions occurring in the MFC, similar to the ones developed for chemical fuel cells, is presented. The model predicts the correct trends for the influence of current density on the cell voltage, as well as, the influence of substrate concentration and temperature on the MFC performance and biofilm thickness. The model outputs are the temperature and concentration profiles and the biofilm thickness. The proposed model is rapidly and easily implemented and is therefore suitable for inclusion in real-time system level MFC calculations. •A model coupling biofilm formation, heat, charger and mass transfer is presented.•The effect of operating and design parameters on MFC performance can be predicted.•The model predicts the temperature profiles and the biofilm thickness.•This model is useful to improve MFC understanding involving simple numeric tools.•This easily to implement model is suitable for use in real-time MFC simulations.</description><subject>Applied sciences</subject><subject>Bio-electrochemical</subject><subject>Biochemical fuel cells</subject><subject>Biofilm</subject><subject>Biofilms</subject><subject>biological models</subject><subject>Charge</subject><subject>Charge transfer</subject><subject>Electric charge</subject><subject>electricity</subject><subject>electrochemistry</subject><subject>Energy</subject><subject>energy transfer</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>heat</subject><subject>Heat and mass transfer</subject><subject>mass transfer</subject><subject>Mathematical modelling</subject><subject>Mathematical models</subject><subject>Microbial fuel cells</subject><subject>Microorganisms</subject><subject>Simulation</subject><subject>sustainable technology</subject><subject>temperature</subject><subject>Waste water</subject><subject>wastewater</subject><subject>wastewater treatment</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRbVooenjDwr1ptCN3ZFk2dKmENInBLposxayHqmCHaeSU8jfV8ahy25GMJyZuToIXWMoMODqflPYrQ3rQ0EA0wJ4AYydoBnQCnJWluQMnce4AQDGhZghPM_wY9ap4cum4rVqs643ts1cHzKVdV6HvvGp6_apqW3bXqJTp9por47vBVo9P30uXvPl-8vbYr7MNRV0yLnSpFQcHAAHQXApFG00NrzhnHJSNw0xROum5tgIV_FSK9Jg43TNaxCG0gt0N-3dhf57b-MgOx_HAGpr-32UmOGqZoSJES0nNIWNMVgnd8F3KhwkBjlakRs5WZGjFQlcJitp7PZ4QcX0cRfUVvv4N0tqARXHOHE3E-dUL9U6JGb1kRZVyWLFMNSJeJgIm4T8eBtk1N5utTU-WD1I0_v_o_wCK5KDBA</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Oliveira, V.B.</creator><creator>Simões, M.</creator><creator>Melo, L.F.</creator><creator>Pinto, A.M.F.R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>A 1D mathematical model for a microbial fuel cell</title><author>Oliveira, V.B. ; Simões, M. ; Melo, L.F. ; Pinto, A.M.F.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-8ac24a80f008092149a3bc1d8b883827bb2d2ccb781d9f684ca2b1dfc78709d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Bio-electrochemical</topic><topic>Biochemical fuel cells</topic><topic>Biofilm</topic><topic>Biofilms</topic><topic>biological models</topic><topic>Charge</topic><topic>Charge transfer</topic><topic>Electric charge</topic><topic>electricity</topic><topic>electrochemistry</topic><topic>Energy</topic><topic>energy transfer</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>heat</topic><topic>Heat and mass transfer</topic><topic>mass transfer</topic><topic>Mathematical modelling</topic><topic>Mathematical models</topic><topic>Microbial fuel cells</topic><topic>Microorganisms</topic><topic>Simulation</topic><topic>sustainable technology</topic><topic>temperature</topic><topic>Waste water</topic><topic>wastewater</topic><topic>wastewater treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, V.B.</creatorcontrib><creatorcontrib>Simões, M.</creatorcontrib><creatorcontrib>Melo, L.F.</creatorcontrib><creatorcontrib>Pinto, A.M.F.R.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliveira, V.B.</au><au>Simões, M.</au><au>Melo, L.F.</au><au>Pinto, A.M.F.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 1D mathematical model for a microbial fuel cell</atitle><jtitle>Energy (Oxford)</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>61</volume><spage>463</spage><epage>471</epage><pages>463-471</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>MFCs (microbial fuel cells) are a promising sustainable technology to meet increasing energy needs, especially using wastewaters as substrates, since they can generate electricity and accomplish wastewater treatment simultaneously. The MFC is a complex system involving bio-electrochemical processes, charge, mass and energy transfer. In this work, a steady state, one-dimensional model accounting for coupled heat, charge and mass transfer, and biofilm formation, along with the electrochemical reactions occurring in the MFC, similar to the ones developed for chemical fuel cells, is presented. The model predicts the correct trends for the influence of current density on the cell voltage, as well as, the influence of substrate concentration and temperature on the MFC performance and biofilm thickness. The model outputs are the temperature and concentration profiles and the biofilm thickness. The proposed model is rapidly and easily implemented and is therefore suitable for inclusion in real-time system level MFC calculations. •A model coupling biofilm formation, heat, charger and mass transfer is presented.•The effect of operating and design parameters on MFC performance can be predicted.•The model predicts the temperature profiles and the biofilm thickness.•This model is useful to improve MFC understanding involving simple numeric tools.•This easily to implement model is suitable for use in real-time MFC simulations.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2013.08.055</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2013-11, Vol.61, p.463-471
issn 0360-5442
language eng
recordid cdi_proquest_miscellaneous_1516752593
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Bio-electrochemical
Biochemical fuel cells
Biofilm
Biofilms
biological models
Charge
Charge transfer
Electric charge
electricity
electrochemistry
Energy
energy transfer
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
heat
Heat and mass transfer
mass transfer
Mathematical modelling
Mathematical models
Microbial fuel cells
Microorganisms
Simulation
sustainable technology
temperature
Waste water
wastewater
wastewater treatment
title A 1D mathematical model for a microbial fuel cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%201D%20mathematical%20model%20for%20a%20microbial%20fuel%20cell&rft.jtitle=Energy%20(Oxford)&rft.au=Oliveira,%20V.B.&rft.date=2013-11-01&rft.volume=61&rft.spage=463&rft.epage=471&rft.pages=463-471&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2013.08.055&rft_dat=%3Cproquest_cross%3E1516752593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1516752593&rft_id=info:pmid/&rft_els_id=S0360544213007445&rfr_iscdi=true